Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D K
a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến
=> BH = HC
Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC
=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH
b) Xét tam giác BCD vuông tịa B có BK là đường cao
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
a, Chứng minh AH là đường trung bình của tam giác BCD
b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)
a) Do AH là đường cao trong tam giác ABC cân tại A
\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC
Suy ra H là trung điểm của BC.
mà AH//BD (vì cùng vuông góc với BC)
\(\Rightarrow\) AH là đường trung bình của tam giác DBC
\(\Rightarrow\) 2AH=BD
b)Áp dụng hệ thức trong tam giác vuông có
\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Vậy...
a) Xét tam giác BHI và tam giác ABI:
BHI = ABI (=90o)
HBI = BAI ( cùng phụ ABH)
=> Tg BHI ~ tg ABI (g.g)
=> \(\frac{IH}{BI}\)= \(\frac{BI}{IA}\)
=> BI2 = IH.IA (1)
Xét tam giác BCD có:
IH // CD (cùng vuông góc BC)
H trđ BC ( tam giác ABC cân tại Acó AH là dg cao => AH là dg trung tuyến)
=> I trđ BD => BI = ID (2)
Từ (1), (2) => ID2 = IH.IA (dpcm)
b) Ta có: DCK = CBK ( cùng phụ BCK)
Mà BAH = CBK (cmt)
=> DCK = BAH
Xét tg CKD và tg ABI:
DCK = BAI (cmt)
CKD = ABI ( =90o)
=> Tg CKD ~ tg ABI ( g.g)
"Còn NC = NK mình nhìn mắt thường còn chưa thấy nó bằng nhau lun á"
a) Tg ABC cân tại A có AH vuông BC (gt)
=> BH=HC
- Tg BDC có :
BH=HC (cmt)
HI//CD (cùng vuông BC)
=> BI=ID (đường TB)
- Xét tg ABI vuông tại B, đường cao BH có :
IH.IA=BI2 (htl)
Mà BI=ID (cmt)
=> ID2=IH.IA
b) Xét tg CKD và ABI có :
\(\widehat{CKD}=\widehat{ABI}=90^o\)
\(\widehat{AIB}=\widehat{CDK}\)(AI//CD)
=> Tg CDK~ABI (g.g)
\(\Rightarrow\frac{CK}{AB}=\frac{KD}{BI}\)
=> CK.BI=KD.AB (1)
Có : CK//AB\(\Rightarrow\frac{NK}{AB}=\frac{DK}{DB}\left(Talet\right)\)
=> NK.DB=AB.DK (2)
-Từ (1) và (2) => CK.BI=NK.DB=NE.2BI
=> CK=2NK
\(\Rightarrow NK=NC=\frac{CK}{2}\left(đccm\right)\)
#H