Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
:))
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Chứng minh rằng: Δ ADC đối xứng với Δ AEB qua AH.
Vì Δ ABC cân tại A có AH là đường cao theo giả thiết nên AH cũng là đường phân giác của góc A.
Theo giả thiết ta có AD = AE nên Δ ADE cân tại A nên AH là đường trung trực của DE
⇒ D đối xứng với E qua AH.
Vì Δ ABC cân tại A có AH là đường cao theo giả thiết nên AH cũng là trung trực của BC.
⇒ B đối xứng với C qua AH, E đối xứng với D qua AH.
Mặt khác, ta có A đối xứng với A qua AH theo quy ước.
⇒ Δ ADC đối xứng với Δ AEB qua AH.
Ta có: △ ABC cân tại A; AH ⊥ BC (gt)
Suy ra: AH là tia phân giác của góc A
Lại có: AI = AK (gt)
Suy ra: ∆ AIK cân tại A
Do AH là tia phân giác của góc A
Nên AH là đường trung trực của IK
Vậy I đối xứng với K qua AH.
A B C H K I E
Xét ΔABC cân tại A(gt).Mà AH là đường cao(gt)
=>AH cx là đường phân giác
=>^IAE=^KAE
Xét ΔIAE và ΔKAE có:
AI=AK(gt)
^IAE=^KAE(cmt)
AE:cạnh chung
=>ΔIAE=ΔKAE(c.g.c)
=>IE=KE (1)
Xét ΔAIK có AI=AK(gt)
=> ΔAIK cân tại A
Mà AE là đường pg
=>AE cx là đường cao
=> IK\(\perp\)AH (2)
Từ (1) và (2) suy ra:
I đối xứng với K qua AH
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
:))
chịu
nhé
bạn
viết
thì
sai