Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: CMR: DB > DC.
A B C D
Ta có: AB = AC (\(\Delta ABC\) cân tại A)
AD là cạnh chung.
Giả sử \(\widehat{ADB}=\widehat{ADC}\)
Thì \(\Delta ADB=\Delta ADC\)
Nhưng \(\widehat{ADB}>\widehat{ADC}\left(gt\right)\)
=> \(\Delta ADB>\Delta ADC\)
=> DB > DC.
Ta có: AB = AC (ΔABC cân tại A)
AD là cạnh chung.
Giả sử ADBˆ=ADCˆ
Thì ΔADB=ΔADC
Nhưng ADBˆ>ADCˆ(gt)
=> ΔADB>ΔADC
=> DB > DC.
Bài này phải vẽ thêm hình.
Trên một nửa mặt phẳng bờ AC ko chứa điểm B, vẽ một góc yAC = góc BAD . Trên tia Ay lấy điểm M sao cho AM = AD.
Xét tam giác ADB và tam giác AMC có :
AB = AC (Vì tam giác ABC cân tại A)
AD = AM
Góc BAD = Góc MAC
=> Tam giác ADB = Tam giác AMC (c.g.c)
=> DB = CM (Hai cạnh tương ứng) (1)
=> Góc ADB = Góc AMC (Hai góc tương ứng)
Mà góc ADB > góc ADC (gt) => AMC > ADC (2)
Nối D với M
Xét tam giác AMD có AD = AM => tam giác AMD cân tại A
=> Góc ADM = Góc AMD (3)
Ta có : Góc ADM + Góc MDC = Góc ADC
=> Góc MDC = Góc ADC - ADM
Góc AMD + Góc DMC = Góc AMC
=> Góc DMC = Góc AMC - Góc AMD
Mà Góc ADC < AMC (theo 2)
Góc ADM = Góc AMD (theo 3)
=> MDC < DMC
=> CM < DC (quan hệ góc cạnh đối diện trong tam giác DMC)
Mà DB= MC (theo 1)
=> DB < DC hay DC > DB
Ta có: AB = AC (ΔABCΔABC cân tại A)
AD là cạnh chung.
Giả sử ADBˆ=ADCˆADB^=ADC^
Thì ΔADB=ΔADCΔADB=ΔADC
Nhưng ADBˆ>ADCˆ(gt)ADB^>ADC^(gt)
=> ΔADB>ΔADCΔADB>ΔADC
=> DB > DC.
Ngọc Linh tự vẽ hình nha!
- Vẽ tam giác đều BCM => BC= MC (1)
- Xét tam giác ACB: ACD+DCB = 45
=> DCB=45-30=15
mà ACM+ACB=60 => ACM=60-45=15
=> DCB=ACM (2)
Cminh tam giác AMB=AMC(C.C.C)\
=>AMC=AMB=M/2=60/2=30
mà AMC=30 => AMC=DBC(3)
Từ (1),(2),(3) => tam giác DBC=AMC(g.c.g)
=> cd=ca
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )
Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác đều BCD \(\Rightarrow\)BD = BC = CD
Nối A với D
Xét tam giác ABD và tam giác ACD có:
AB = AC (do tam giác ABC cân tại A)
AD - cạnh chung
BD = CD (theo cách dựng tam giác đều)
\(\Rightarrow\)tam giác ABD = tam giác ACD (c - c - c)
\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}\)(2 góc tương ứng)
Xét tam giác AMB và tam giác AMC có:
AM - cạnh chung
\(\widehat{BAM}=\widehat{CAM}\)(theo chứng minh trên)
AB = AC (do tam giác ABC cân tại A)
\(\Rightarrow\)tam giác ABM = tam giác ACM (c - g - c)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Xét tam giác MBC có: \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)(theo định lí tổng 3 góc của tam giác)
\(\Rightarrow10^0+30^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=140^0\)
Ta có: \(\widehat{BMC}+\widehat{AMB}+\widehat{AMC}=360^0\)
\(\Rightarrow\widehat{AMB}+\widehat{AMC}=360^0-140^0=220^0\)
Mà \(\widehat{AMB}=\widehat{AMC}\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{1}{2}220^0=110^0\)
Vậy \(\widehat{AMB}=110^0\)