K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

a) ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai góc tương ứng) ⇒ ΔAMN cân tại A.

b) Hai tam giác vuông BHM và CKN có

      BM = CN (gt)

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

c) Theo câu b ta có ΔBHM = ΔCKN ⇒HM = KN (hai góc tương ứng)

Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.

d) ΔBHM = ΔCKN

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy tam giác OBC là tam giác cân tại O.

e) Khi góc BAC = 60º và BM = CN = BC

Tam giác cân ABC có góc BAC = 60º nên là tam giác đều

⇒ AB = BC và góc B1 = 60º

Ta có: AB = CB, BC = BM (gt) ⇒ AB = BM ⇒ ΔABM cân ở B ⇒ Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Mà theo tính chất góc ngoài trong ΔBAM thì

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Tương tự ta có

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Tam giác cân OBC có góc B3=60º nên ΔOBC là tam giác đều.

8 tháng 9 2023

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK(2 cạnh tương ứng)

c) ta có : AM=AN  (theo a) 

               HM=KN (tam giác MHB=tam giác NKC)

AM = AH+HM

AN= AK+ KN 

=> AH= AK

d) tam giác MHB=tam giác NKC(theo b) 

=> góc HBM=góc KCN(2 góc tương ứng)

góc HBM=góc OBC(đối đỉnh)

góc KCN=góc OCB(đối đỉnh)

=> góc OBC=góc OCB

=> tam giác OBC cân ở O

e) tam giác ABC có AB=AC ; góc BAC=60độ 

=> tam giác ABC đều 

=> AB=AC=BC

mà BC=BM(gt)

=> BM=AB

=>tam giác ABM cân ở B

góc ABC + góc ABM=180độ (kề bù)

=> góc ABM =180độ - góc ABC

                     =180độ-60độ

                     =120độ

tam giác ABC cân ở B 

=> góc BAM=góc BMA =(180độ-góc ABM) / 2=180012002=6002=3001800−12002=6002=300

vậy góc AMN=30độ

13 tháng 10 2019

B K E C H A D M

a)DC//BE (cùng vuông góc với AC);DB//CE (cùng vuông góc với AB) => là hình bình hành

b) hình bình hình thì 2 đường chéo giao nhau tại trung điểm mỗi đường hay DE cắt BC tại M và M là trung điểm DE

Để DE đi qua A tức là D;E;A thằng hàng

mà AE là một đường cao hay AE vuông góc BC nên D;E;A thẳng hàng tức là DE vuông góc với BC 

hình bình hành có 2 đường chéo vuông góc là hình thoi

c) tứ giác ABDC có góc DBA +góc DCA =180 nên góc BAC+ góc BDC=180

13 tháng 10 2019

Mượn hình của bạn Manh nhé!

a) Ta có: DB // CK ( \(\perp\)AB)

=> DB // CE   (1)

BH // DC ( \(\perp\) AC )

=> DC // BE  (2)

Từ (1) ; (2) => DBEC là hình bình hành.

b) +) Theo câu a) DBEC là hình bình hành 

=> Hai đường chéo BC và DE cắt nhau tại trung điểm của mỗi đường.

Mà M là trung điểm BC => M là trung điểm DE.

+) CK; BH là hai đường cao của \(\Delta ABC\)  và CK ; BH cắt nhau tại E.

=> E là trực tâm của \(\Delta ABC\)

=> AE là đường cao hạ từ A. (3)

Theo giả thiết DE qua A  mà DE cắt BC tại M là trung điểm cạnh  BC

=> AE qua trung điểm của cạnh BC

=>  AE là đường trung tuyến  của \(\Delta ABC\) (4)

Từ (3); (4) => \(\Delta ABC\) cân tại A

c) Em tham khảo bài làm bạn Manh.

17 tháng 4 2018

đe nhu sit a

de sai a