Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABM và ACN
A la goc chung
AB=AC
AN=AM( deu la trung diem cua 2 canh bang nhau
=>Tam giac ABM=ACN=> BM=CN(dpcm)
a, Do \(NA=NB=\frac{1}{2}AB\)
\(AM=MC=\frac{1}{2}AC\)
Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)
b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:
\(\widehat{BAC}chung\)
\(AB=AC\)
\(AN=AM\)(câu a)
\(\Rightarrow\Delta ANC=\Delta AMB\)
\(\Rightarrow BM=CN\)
c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:
\(BCchung\)
NB = MC ( câu a)
NC = MB ( câu b)
=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C
TYM cho chị nhé <3
a) Xét △ABM vuông tại A và △DBM vuông tại D có:
BM chung
AB=DB=3cm(gt)
=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)
b) Xét △AMN và △DMC có:
AMN=DMC(2 góc đối đỉnh)
AM=DM(cmt)
MAN=MDC(gt)
=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M
c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)
Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B
Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC
=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN
d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2
=> 9+16=25=BC^2 (cm) => BC = 5 cm
Ta có BD+DC=BC;BD=3cm=> DC=2cm
Ta có AN=DC(cmt) => AN=2cm
Áp dụng định lý Pytago vào △ANC vuông tại A có:
AN^2+AC^2=NC^2
=> 4+16=NC^2
=> NC= căn 20 = 2 x căn 5 (cm)
Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)
Áp dụng định lý Pytago vào △BKC vuông tại K có:
BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)
Ta có hình vẽ:
A B C N M
Theo bài ra ta có:
Tam giác ABC cân tại A
=> AB=AC ( hai cạnh bên của tam giác cân )
Ta lại có:
M là trung điểm của AC;N là trung điểm của AB
=> AN=BN=CM=AM
Ta có: \(\Delta ABM=\Delta ACN\) (c.g.c)
=> BM=CN ( hai cạnh tuơng ứng )
(đ.p.c.m)
\(\hept{\begin{cases}AB=AC\\AM=\frac{1}{2}AC\\AN=\frac{1}{2}AB\end{cases}}\)
Từ đó suy ra AM=AN
=>BM=CN
ta có tam giác ABC cân tại A => AB=AC ( hai cạnh bên)
mà ta có AM =MC (vì m là trung điểm) => mc=\(\frac{1}{2}ac\)
ta lại có an =nb (vì n là trung điểm ab)=> nb=\(\frac{1}{2}ab\) mà ab=ac=> 1/2 ab=1/2ac hay mc=bn
xét tam giác bnc và tam giác cmb có:
bn=mc(cmt)
góc nbc=góc mcb
bc chung
do đó tam giác bnc = tam giác cmb (c.g.c)
=>nc=bm (hai cạnh tương ứng)
thông cảm hình vẽ quá xấu mình chắc chắn đúng đó
A C M N P I B D
Bài làm:
P/s: Bạn sửa đề thành: "Trên tia đối của tia BA lấy điểm P sao cho B là trung điểm MP" nhé.
Từ N kẻ đường thẳng song song với AP cắt BC tại D
Vì ND // AP // AB
\(\Rightarrow\widehat{NDC}=\widehat{ABC}\left(1\right)\)
Mà tam giác ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{NCD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{NCD}=\widehat{NDC}\)
=> Tam giác NDC cân tại N
=> ND = NC (3)
Mà MB = BP ( B là trung điểm MP ) (4)
Kết hợp giả thiết BM = CN với (3) và (4) ta được: ND = BP (S)
Mà ND // BP \(\Rightarrow\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(so.le.trong\right)\\\widehat{IPB}=\widehat{IND}\left(so.le.trong\right)\end{cases}\left(A\right)}\)
Ta có: \(\Delta IDN=\Delta IBP\left(g.c.g\right)\) vì:
\(\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(theo.\left(A\right)\right)\\BP=DN\left(theo.\left(S\right)\right)\\\widehat{IPB}=\widehat{IND}\left(theo.\left(A\right)\right)\end{cases}}\)
\(\Rightarrow IN=IP\)
=> I là trung điểm NP
Đoạn CM tam giác bằng nhau nó bị lỗi nên mk viết lại đoạn đấy:
+ \(\widehat{IDN}=\widehat{IBP}\left(theo\left(A\right)\right)\)
+ \(BP=DN\left(theo\left(S\right)\right)\)
+ \(\widehat{IPB}=\widehat{IND}\left(theo\left(A\right)\right)\)
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{GNB}=\widehat{GMC}\)
Xét ΔGNB và ΔGMC có
\(\widehat{GNB}=\widehat{GMC}\)
NB=MC
\(\widehat{GBN}=\widehat{GCM}\)
Do đó: ΔGNB=ΔGMC
Tam giác ABC cân tại A nên AB = AC.
M và N lần lượt là trung điểm của AC và AB nên:
\(\begin{array}{l}AN = BN = \dfrac{1}{2}AB\\AM = CM = \dfrac{1}{2}AC\end{array}\)
Mà AB = AC nên AN = BN = AM = CM.
Xét tam giác AMB và tam giác ANC có:
\(\widehat A\)chung;
AB = AC (cmt);
AM = AN (cmt).
Vậy \(\Delta AMB = \Delta ANC\)(c.g.c) nên BM = CN ( 2 cạnh tương ứng).