K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2023

Tam giác ABC cân tại A nên AB = AC.

M và N lần lượt là trung điểm của AC và AB nên:

     \(\begin{array}{l}AN = BN = \dfrac{1}{2}AB\\AM = CM = \dfrac{1}{2}AC\end{array}\)

Mà AB = AC nên AN = BN = AM = CM.

Xét tam giác AMB và tam giác ANC có:

     \(\widehat A\)chung;

     AB = AC (cmt);

     AM = AN (cmt).

Vậy \(\Delta AMB = \Delta ANC\)(c.g.c) nên BM = CN ( 2 cạnh tương ứng).

15 tháng 1 2016

Xét tam giác ABM và ACN 

A la goc chung 

AB=AC

AN=AM( deu la trung diem cua 2 canh bang nhau

=>Tam giac ABM=ACN=> BM=CN(dpcm)

15 tháng 1 2016

EM MS CÓ LỚP 5 THÔI Ạ !

1 tháng 5 2019

a, Do \(NA=NB=\frac{1}{2}AB\)

\(AM=MC=\frac{1}{2}AC\)

Mà \(AB=AC\)\(\Rightarrow NA=MA;NB=MC\)\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)

b, Xét \(\Delta ANC\)và \(\Delta AMB\)có:

\(\widehat{BAC}chung\)

\(AB=AC\)

\(AN=AM\)(câu a)

\(\Rightarrow\Delta ANC=\Delta AMB\)

\(\Rightarrow BM=CN\)

c, Xét \(\Delta NBC\) và\(\Delta MCB\) có:

\(BCchung\)

NB = MC ( câu a)

NC = MB ( câu b)

=>\(\Delta NBC=\Delta MCB\)=>\(\widehat{GBC}=\widehat{GCB}\)=>\(\Delta GBC\) cân tại C

TYM cho chị nhé <3

15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)

1 tháng 6 2017

Ta có hình vẽ:

A B C N M

Theo bài ra ta có:

Tam giác ABC cân tại A

=> AB=AC ( hai cạnh bên của tam giác cân )

Ta lại có:

M là trung điểm của AC;N là trung điểm của AB

=> AN=BN=CM=AM

Ta có: \(\Delta ABM=\Delta ACN\) (c.g.c)

=> BM=CN ( hai cạnh tuơng ứng )

(đ.p.c.m)

11 tháng 2 2018

\(\hept{\begin{cases}AB=AC\\AM=\frac{1}{2}AC\\AN=\frac{1}{2}AB\end{cases}}\)

Từ đó suy ra AM=AN

                 =>BM=CN

12 tháng 2 2018

ta có  tam giác ABC cân tại A => AB=AC ( hai cạnh bên)

mà ta có  AM =MC (vì m là trung điểm) => mc=\(\frac{1}{2}ac\)

ta lại có an =nb (vì n là trung điểm ab)=> nb=\(\frac{1}{2}ab\) mà ab=ac=> 1/2 ab=1/2ac hay mc=bn

xét tam giác bnc và tam giác cmb có:

bn=mc(cmt)

góc nbc=góc mcb

bc chung

do đó tam giác bnc = tam giác cmb (c.g.c)

=>nc=bm (hai cạnh tương ứng)

thông cảm hình vẽ quá xấu  mình chắc chắn đúng đó

15 tháng 2 2021

3 tháng 8 2020

A C M N P I B D

Bài làm:

P/s: Bạn sửa đề thành: "Trên tia đối của tia BA lấy điểm P sao cho B là trung điểm MP" nhé.

Từ N kẻ đường thẳng song song với AP cắt BC tại D

Vì ND // AP // AB

\(\Rightarrow\widehat{NDC}=\widehat{ABC}\left(1\right)\)

Mà tam giác ABC cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{NCD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{NCD}=\widehat{NDC}\)

=> Tam giác NDC cân tại N

=> ND = NC (3)

Mà MB = BP ( B là trung điểm MP ) (4)

Kết hợp giả thiết BM = CN với (3) và (4) ta được: ND = BP (S)

Mà ND // BP \(\Rightarrow\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(so.le.trong\right)\\\widehat{IPB}=\widehat{IND}\left(so.le.trong\right)\end{cases}\left(A\right)}\)

Ta có: \(\Delta IDN=\Delta IBP\left(g.c.g\right)\) vì:

\(\hept{\begin{cases}\widehat{IDN}=\widehat{IBP}\left(theo.\left(A\right)\right)\\BP=DN\left(theo.\left(S\right)\right)\\\widehat{IPB}=\widehat{IND}\left(theo.\left(A\right)\right)\end{cases}}\)

\(\Rightarrow IN=IP\)

=> I là trung điểm NP

3 tháng 8 2020

Đoạn CM tam giác bằng nhau nó bị lỗi nên mk viết lại đoạn đấy:

\(\widehat{IDN}=\widehat{IBP}\left(theo\left(A\right)\right)\)

\(BP=DN\left(theo\left(S\right)\right)\)

\(\widehat{IPB}=\widehat{IND}\left(theo\left(A\right)\right)\)

a: Xét ΔABM và ΔACN có 
AB=AC

\(\widehat{BAM}\) chung

AM=AN

Do đó: ΔABM=ΔACN

Suy ra: BM=CN

b: Xét ΔNBC và ΔMCB có 

NB=MC

NC=MB

BC chung

Do đó: ΔNBC=ΔMCB

Suy ra: \(\widehat{GNB}=\widehat{GMC}\)

Xét ΔGNB và ΔGMC có 

\(\widehat{GNB}=\widehat{GMC}\)

NB=MC

\(\widehat{GBN}=\widehat{GCM}\)

Do đó: ΔGNB=ΔGMC