Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C E 50
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
A B C D E
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
x A B C m 1
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Sorry, bạn tự vẽ hình nha!
a.
Tam giác ABC cân tại A có:
\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)
b.
Xét tam giác ABD và tam giác ACE có:
AB = AC (tam giác ABC cân tại A)
B = C (tam giác ABC cân tại A)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A
c.
Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:
AD = AE (tam giác ADE cân tại A)
A1 = A2 (tam giác ABD = tam giác ACE)
=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
ban oi co phai sai de hay ko , doan CE = CA do . Ko ve hinh duoc
ko .mình vẽ hình rồi nè bạn xem có đúng ko