Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D K
a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến
=> BH = HC
Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC
=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH
b) Xét tam giác BCD vuông tịa B có BK là đường cao
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
Lời giải:
a) Vì tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến. Do đó $H$ là trung điểm của $BC$
$AH\perp BC, BD\perp BC\Rightarrow AH\parallel BC$. Áp dụng định lý Talet:
$\frac{AH}{BD}=\frac{CH}{CB}=\frac{1}{2}$ (do $H$ là trung điểm $BC$)
$\Rightarrow BD=2AH$ (đpcm)
b)
Xét tam giác vuông tại $B$ là $BDC$ có đường cao $BK$. Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{BK^2}=\frac{1}{BD^2}+\frac{1}{BC^2}$
Mà theo phần a thì $BD=2AH\Rightarrow BD^2=4AH^2$
$\Rightarrow \frac{1}{BK^2}=\frac{1}{4AH^2}+\frac{1}{BC^2}$ (đpcm)
CHO MÌNH SỬA LẠI CÂU 2: Biết chu vi \(\Delta ABH=30cm\)và chu vi \(\Delta ACH=10cm\).Tính chu vi \(\Delta ABC\)
a) Do AH là đường cao trong tam giác ABC cân tại A
\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC
Suy ra H là trung điểm của BC.
mà AH//BD (vì cùng vuông góc với BC)
\(\Rightarrow\) AH là đường trung bình của tam giác DBC
\(\Rightarrow\) 2AH=BD
b)Áp dụng hệ thức trong tam giác vuông có
\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Vậy...
trinhf bày rõ hơn được không bạn ơii