K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

A B C H D K

a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến 

=> BH = HC

Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC

=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH

b) Xét tam giác BCD vuông tịa B có BK là đường cao

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)

2 tháng 7 2021

a) Do AH là đường cao trong tam giác ABC cân tại A

\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC

Suy ra H là trung điểm của BC.

mà AH//BD (vì cùng vuông góc với BC)

\(\Rightarrow\) AH là đường trung bình của tam giác DBC

\(\Rightarrow\) 2AH=BD

b)Áp dụng hệ thức trong tam giác vuông có 

\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Vậy...

15 tháng 8 2021

trinhf bày rõ hơn được không bạn ơii

 

Tham khảo:

20 tháng 10 2015

tick cho mình đi rồi mình giải câu c

25 tháng 10 2021

Ủa rồi cậu đã giải câu c) chưa?? 😃. Đã 4 năm rồi còn chưa thực hiện lời hứa =)))

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Hình vẽ:

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

a) Vì tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến. Do đó $H$ là trung điểm của $BC$

$AH\perp BC, BD\perp BC\Rightarrow AH\parallel BC$. Áp dụng định lý Talet:

$\frac{AH}{BD}=\frac{CH}{CB}=\frac{1}{2}$ (do $H$ là trung điểm $BC$)

$\Rightarrow BD=2AH$ (đpcm)

b)

Xét tam giác vuông tại $B$ là $BDC$ có đường cao $BK$. Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{BK^2}=\frac{1}{BD^2}+\frac{1}{BC^2}$
Mà theo phần a thì $BD=2AH\Rightarrow BD^2=4AH^2$

$\Rightarrow \frac{1}{BK^2}=\frac{1}{4AH^2}+\frac{1}{BC^2}$ (đpcm)

29 tháng 6 2017

a, Chứng minh AH là đường trung bình của tam giác BCD

b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)