K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC cân tại A

mà AD là trung tuyến

nên AD là đường cao

Xét ΔABC có

AD,BE,CF là các đường cao

BE cắt CF tại H

=>A,H,D thẳng hàng

19 tháng 7 2017

A B C D H E F

Xét tam giác ABC cân tại A có: AD là trung tuyến

=> AD đồng thời là đường cao của tam giác ABC

Mặt khác ta có:

BE;CF là hai đường cao của tam giác ABC mà

\(BE\cap CF=\left\{H\right\}\) nên H là trực tâm của tam giác ABC

=> A:H:D thẳng hàng(đpcm)

Chúc bạn học tốt!!!

19 tháng 7 2017

trời quên ghi điểm H , A và D kìa bố

a: Xét tứ giác BFGE có 

GE//BF

FG//BE

Do đó: BFGE là hình bình hành

Suy ra: GE//BF và GE=BF

hay GE//AF và GE=AF

Xét tứ giác AFEG có 

GE//AF

GE=AF

Do đó: AFEG là hình bình hành

3 tháng 3 2021
3 điểm tháng hàng

a: HC vuông góc AI

IH vuông góc HM

=>góc AIH=góc MHC(1)

góc IAH=90 độ-góc ABD

góc HCM=90 độ-góc FBC

=>góc IAH=góc HCM(2)

Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH

b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N

=>HM vuông góc CN

=>M là trựctâm của ΔHCN

=>NM vuông góc CH

=>NM//AB

=>NM//BG

=>N là trung điểm của CG

IK//GC

=>IH/GN=HK/NC

mà GN=NC

nên IH=HK

=>H là trung điểm của IK

9 tháng 10 2021

\(a,\left\{{}\begin{matrix}BF//GE\left(gt\right)\\FG//BE\left(gt\right)\end{matrix}\right.\Rightarrow BFGE\) là hbh \(\Rightarrow BF=GE\)

Mà \(BF=AF\left(F.là.trung.điểm.AB\right)\Rightarrow AF=GE\)

Mà \(AF//GE(BF//GE)\)

Do đó \(AFEG\) là hbh

\(b,\left\{{}\begin{matrix}BD=DC\\AE=EC\end{matrix}\right.\Rightarrow ED\) là đtb tg ABC \(\Rightarrow ED//AB\)

Mà \(EG//AB\left(gt\right)\)

Theo tiên đề Ơ-clít ta được EG trùng ED hay E,G,D thẳng hàng

\(c,\) ED là đtb tg ABC nên \(ED=\dfrac{1}{2}AB=AF=BF=GE\left(cm.trên\right)\)

Do đó E là trung điểm GD 

Mà E là trung điểm AC nên ADCG là hbh

Do đó \(CG=AD\)