Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 3
bạn tự kẻ hình nha
a)*Tam giác IAB có I thuộc trung trực AB
=> Tam giác IAB cân tại I
*Có IAC = 90 – BAI
BCA = 90 – ABC (mà ABC = BAI)
=>Tg IAC cân tại I
b)*Tg BMC có đg cao CA cắt đg cao MI tại N
=>N là trực tâm
=>BE vg góc MC
c)*M thuộc trung trực BC => MB = MC => MBC = MCB
*N thuộc trung trực BC => NB = NC => NBC = NCB
=> Tg BAC = Tg CEB (cgc)
=> MA = ME => M thuộc trung trực AE
* Gọi J là giao của MI và AE
=> Tg MJA = Tg MJE (cgc)
=> MI vuông góc AE (mà MI vg góc BC)
=>AE // BC d)* Có NB = NC (cmt)
mà EB = AC (hai cạnh tương ứng do Tg BAC = Tg CEB)
=>NA = NE
=>Tg NAE cân tại N
=>NAE = NEA
mà NEA = NBC (slt) = NCB (Tg NCB cân taih N – cmt ) = IAC (Tg IAC cân tại I – cmt)
=>NAE = IAC
=>AK là tpg IAE ( K là giao của AN và IE)
mà AK cx là trung tuyến Tg IAE ( do N là trọng tâm – gt )
=>Tg IAE cân tại A
=>IA = IE
mà IA = IC (Tg IAC cân tại I – cmt)
=>IE = IC
=>Tg IEA = Tg EIC (cgc)
=>IA = EC
mà EC = BA (cmt)
=>IA = BA
=>Tg IAB đều
=>ABC = 60
=>Tg ABC cần có góc ABC = 60 để N là trọng tâm Tg IAE
k cho mk nha
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I
a) áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> 225 = 81 + 144 = 225
=> tam giác ABC là tam giác vuông
trong tam giác vuông ABC có \(\widehat{A}\)> \(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn
vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)
b) xem lại đề bài
9cm A B C 12cm 15cm D
Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).
a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).
Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\), \(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)
suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).
b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).
Suy ra \(EB\perp MC\).
c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)
suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn)
suy ra \(AB=EC\)
mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))
nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)
suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)
mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)
mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).
d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong)
suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))
Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).
suy ra tam giác \(AIE\)đều (vì \(IE=IA\))
suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).
Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).