K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

A B C D E H

a) Tam giác ABC cân tại A có AH là đường cao nên AH đồng thời là đường trung tuyến

=>  HB = HC

Xét 2 tgiac vuông:  tam giác ABH và tam giác ACH có:

  AB = AC  (gt) 

  HB = HC  (cmt)

suy ra:  tam giác ABH = tam giác ACH    (ch_cgv)

=>  góc BAH = góc CAH 

2)  HB = HC = 1/2 BC = 4cm

Áp dụng Pytago ta có:

     AH2 + HB2 = AB2  

=>  AH2 = AB2 - HB2 = 9

=> AH = 3

3)  Xét 2 tam giác vuông:  tam giác HDB và tam giác HEC có:

     BH = CH  (cmt)

     góc DBH = góc ECH  (gt)

suy ra: tam giác HDB = tam giác HEC  (ch_gn)

=>  HD = HE

=> tam giác HDE cân tại H

          

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Suy ra: BH/BA=BA/BC

hay \(BA^2=BH\cdot BC\)

b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)

\(AB=\sqrt{BH\cdot BC}=2\sqrt{13}\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HF là đường cao

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

hay AF/AC=AE/AB

Xét ΔAFE vuông tại A và ΔACB vuông tại A có 

AF/AC=AE/AB

Do đó:ΔAFE\(\sim\)ΔACB

4 tháng 3 2022

ôg ơi có hình vẽ k

 

5 tháng 8 2018

1.Giải:

a. Vì tam giác ABC vuông tại A và AM = \(\frac{1}{2}\)BC

=> AM là đường trung tuyến ứng với cạnh BC

=> M là trung điểm của cạnh BC

=> AM = BM = \(\frac{1}{2}\)BC

Vì AM = BM => Tam giác ABM cân tại M

b. Vì N là trung điểm của AB

=> MN là đường trung tuyến ứng với cạnh AB của tam giác ABM

Mà tam giác ABM cân tại M ( câu a )

=> MN đồng thời là đường cao xuất phát từ M của tam giác ABM

=> \(MN\perp AB\)

Do đó: MN//AC (cùng vuông góc với AB)

=> MNAC là hình thang

Mặt khác: \(\widehat{NAC}\)\(^{90^0}\)(gt) 

=> Tứ giá MNAC là hình thang vuông.