Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
GT | △ABC cân: AB = AC = 5 cm. HB = HC. AH = 4cm HM ⊥ AB tại M , HN ⊥ AC tại N. tia vuông góc với AB tại B cắt AH tại E |
KL | a, △AHB = △AHC b, BC = ? c, △HNM cân d, EC = EB |
Bài làm:
a, Xét △AHB và △AHC
Có: AB = AC (gt)
HB = HC (gt)
AH là cạnh chung
=> △AHB = △AHC (c.c.c)
b, Vì △AHB = △AHC (cmt) => AHB = AHC (2 góc tương ứng)
Mà AHB + AHC = 180o (2 góc kề bù)
=> AHB = AHC = 180o : 2 = 90o
Xét △AHB vuông tại tại H có: AB2 = AH2 + BH2
=> 52 = 42 + BH2
=> 25 = 16 + BH2
=> BH2 = 9
=> BH = 3
Mà BH = HC (gt)
=> HC = 3
Ta có: BC = BH + HC = 3 + 3 = 6
c, Vì △ABC cân có: AB = AC
=> △ABC cân tại A
=> ABC = ACB
Xét △MBH vuông tại M và △NCH vuông tại N
Có: HB = HC (gt)
MBH = NCH (cmt)
=> △MBH = △NCH (cg-gn)
=> HM = HN (2 cạnh tương ứng)
=> △HMN cân tại H
d, Vì △AHB = △AHC (cmt)
=> HAB = HAC (2 góc tương ứng)
Xét △ABE và △ACE
Có: AB = AC (gt)
BAE = CAE (cmt)
AE là cạnh chung
=> △ABE = △ACE (c.g.c)
=> EB = EC (2 cạnh tương ứng)
a)
Cách 1 là:
Xét 🔺AHB vuông tại H1 và 🔺AHB vuông tại H2 ,ta có:
AC=AB(vì là tam giác cân)
góc B= góc C(vì là tam giác cân)
=>🔺AHC=🔺AHC cạnh huyền-góc nhọn)
=> H là trung điểm của BC
Cách 2:
Xét 🔺AHC vuông tại H1 và 🔺 AHB vuông tại H2 ,ta có:
AB=AC(vì là tam giác cân)
AH là cạnh chung
=> 🔺AHC=🔺 AHB ( cạnh huyền góc vuông)
=> H là trung điểm của BC
b)
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC
Ta có: ∠AHB = ∠AHC = 900 (AH⊥BC)
AB = AC ( ΔABC cân tại A)
AH chung
nên ΔAHB = ΔAHC (cạnh huyền - cạnh góc vuông)
b) Ta có: BH = CH (ΔAHB = ΔAHC)
Mà H ∈ BC
nên H là trung điểm của BC
suy ra BH = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)* 6 = 3cm
Xét ΔAHB vuông tại H (AH⊥BC)
Có: AH2 + BH2 = AB2 (Định lý Py-ta-go)
mà BH = 3cm; AB = 5cm
nên AH2 + 32 = 52
suy ra AH = 4cm
Ta có hai đường trung tuyến BE và CD của ΔABC cắt nhau tại G
nên G là trọng tâm của ΔABC
suy ra AG = \(\frac{2}{3}\)AH
mà AH = 4cm
nên AG = \(\frac{8}{3}\)cm
c) Có ΔABC cân tại A
mà AH là đường cao của ΔABC (AH⊥BC)
nên AH là phân giác của ΔABC
suy ra ∠BAH = ∠CAH
Xét ΔABG và ΔACG
Có AB = AC (ΔABC cân tại A)
∠BAH = ∠CAH (cmt)
AG chung
nên ΔABG = ΔACG (c-g-c)
suy ra ∠ABG = ∠ACG (2 góc tương ứng)
A B C H M N 1 2 I K
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )
Từng bài 1 thôi nha!
Mình làm bài 3 cho dễ
Bn tự vẽ hình
a) CM tg ABH=tg ACH (ch-cgv)
=> HC=HB=2 góc tương ứng
Nên H là trung điểm BC
=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH
b) Có: tg ABH vuông tại H (AH vuông góc BC)
=> AH2+BH2=AB2 => AH2+42=52 => AH2=9
Mà AH>O Nên AH=3
c) Xét tg ADH và tg AEH có:
\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)
=> HD=HE(2 góc tương ứng)
=> tg HDE cân tại H
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
Giải
b)Xét tam giác BAH và CAH có:
AB=AC(gt)
góc B =góc C(gt)
AH chung
\(\Rightarrow\)tam giác BAH =CAH (c.g.c)
\(\Rightarrow\)góc BAH=CAH (2 góc t/ư)
Mặt khác AH nằm giữa AB và AC ,chia góc A thành 2 góc bằng nhau
Mà H là trung điểm BC
\(\Rightarrow\)AH là tia phân giác góc A và vuông góc BC