K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

đề có vấn đề đấy bạn, ABC cân A thì AB =AC =12 cm chứ sao AC =16cm đc nhỉ

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

DO đó: ΔHBA∼ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

NV
22 tháng 4 2021

Do E là chân đường phân giác góc D, theo định lý phân giác:

\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)

Ta có:

\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)

\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\)  \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)

\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)

\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)

NV
22 tháng 4 2021

undefined

9 tháng 5 2022

 

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \sqrt{400}400= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}ACAH=BCABhay16AH=2012

=> AH = \frac{12.16}{20}=9,62012.16=9,6( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \sqrt{51,84}51,84 = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}BDAB=CDACBCCDAB=CDAC

                    <=>   \frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}CD(BCCD)AB.CD=CD(BCCD)AC(BCCD)

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \frac{320}{28}\approx11.43\left(cm\right)2832011.43(cm)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \frac{320}{28}28320\approx 8,57 ( cm )

18 tháng 4 2023

loading...  

15 tháng 4 2016

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
 

1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó:ΔHBA\(\sim\)ΔABC

2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)

17 tháng 3 2021

1, a, Áp dụng định lý Pi-ta-go vào ΔΔ vuông ABCABC có:

AB2+AC2=BC2⇔BC=20AB2+AC2=BC2⇔BC=20 (cm)

Do AD là phần giác ˆAA^ theo tính chất đường phân giác ta có:

BDCD=ABAC=1216=34BDCD=ABAC=12/16=3/4

⇒BD/BD+CD=3/3+4⇒BD/BC=3/7⇒BD/BD+CD=3/3+4⇒BD/BC=3/7

⇒BD=3/7BC=60/7⇒BD=3/7BC=6/07

⇒DC=BC−BD=807⇒DC=BC−BD=807

b, AH là đường cao ΔΔ vuông ABC nên:

SΔABC=AH.BC/2=AB.AC2SΔABC=AH.BC2=AB.AC/2

⇒AH=AB.C/BC=48/5⇒AH=AB.C/BC=48/5 (cm)

Ta có:

BH2=AB2−AH2⇒BH=365BH2=AB2−AH2⇒BH=365 (cm)

⇒DH=BD=BH=4835⇒DH=BD=BH=4835 (cm)

AD2=DH2+AH2⇒AD=48√2/7AD2=DH2+AH2⇒AD=4827 (cm)

Bài 2, a,

Xét hai ΔABMΔABM và ΔACNΔACN có:

ˆAA^ chung

AB=ACAB=AC

ˆABM=ˆACNABM^=ACN^ (=12ˆB=12ˆC)(=12B^=12C^)

⇒ΔABM=ΔACN⇒ΔABM=ΔACN (g.c.g)

⇒AM=AN⇒AM=AN (hai cạnh tương ứng)

Ta có: AM=AN và AB=AC ⇒ANAB=AMAC⇒MN//BC⇒ANAB=AMAC⇒MN//BC (Ta-lét đảo)

b, Do BM là phân giác ˆBB^ theo tính chất đường phân giác ta có:

AM/MC=AB/BC=5/6AM/MC=AB/BC=5/6

⇒AM/AM+MC=5/5+6⇒AM/AC=5/11⇒AM/AM+MC=55+6⇒AM/AC=511

⇒AM=5/11AC=25/11⇒AM=5/11AC=25/11 (cm)

⇒MC=AC−AM=30/11⇒MC=AC−AM=30/11 (cm)

MN//BC⇒MN/BC=AM/AC=5/11MN//BC⇒MNBC=AMAC=5/11

⇒MN=5/11BC=3011⇒MN=51/1BC=30/11 (cm).

imagerotate

image

image

17 tháng 3 2021

vào fun english ủng hộ mk nha