Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác NAB= tam giác NDM (c.g.c);
nên AB song song DM;
từ đó suy ra AM song song BD (1);
xét tam giác BDC có
M là trung điểm BC
E là trung điểm DC
suy ra ME song song BD (2)
từ (1) và (2)
suy ra A,M,E thẳng hàng.
A B C E M D
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=\(\frac{2}{3}\)MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=\(\frac{2}{3}\)MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
a: Sửa đề ΔAMC
Xét ΔAMC và ΔDMB có
góc MCA=góc MBD
MC=MB
góc AMC=góc DMB
=>ΔAMC=ΔDMB
b: ΔAMC=ΔDMB
=>AC=BD
=>BD=AB
c: Xét ΔBAD có
BM,DP là trung tuyến
BM cắt DP tại O
=>O là trọng tâm
a, Xét tam giác ABM và tam giác ACM có
AB=AC(gt)
BM=CM(gt)
^ABC=^ACB(gt)
=> tam giác ABM= tam giác ACM(c-g-c)
=> ^AMB=^AMC(2 g tương ứng)
=> ^AMB=^AMC=180 độ /2 =90 độ
hay AM vuông góc vs BC
b, Ta có: BM=MC=1/2 BC=5
Áp dụng đly pitago vào tam giác vuông ABM có:
AM^2=AB^2-BM^2=13^2-5^2=144
=> AM=12
*Tự vẽ hình
a) Xét tam giác ABM và ACM, có :
AB=AC(GT)
AM-cạnh chung
BM=MC(GT)
-> Tam giác ABM=ACM(c.c.c)
b) Do tam giác ABM=ACM (cmt)
-> \(\widehat{AMB}=\widehat{AMC}=90^o\)
-> AM vuông góc BC
c) Xét tam giác AEI và MBI, có :
\(\widehat{EAI}=\widehat{BMI}=90^o\)
\(\widehat{AIE}=\widehat{BIM}\left(đđ\right)\)
AI=IM(GT)
-> tam giác AEI=MBI(g.c.g)
-> AE=BM ( đccm)
d) Chịu. Tự làm nhe -_-'
#Hoctot
bạn tự vẽ hình
a, xét tam giác ABM và tam giác ACM có :
AB=AC (gt)
MB=MC (gt)
AM là cạch chung
suy ra tam giác ABM =tam giác ACN (c.c.c)
b, Vì tam giác ABM = tam giác ACN (câu a)
suy ra góc M1= góc M2 (2 góc tương ứng)
mà M1+M2=180 ( 2 góc kề bù)
suy ra : M1=M2= 90
suy ra AM vuông góc BC
c, Vì tam giác ABM = tam giác ACM (câu a)
suy ra : A1=A2 ( 2 góc tương ứng)
suy ra: AM là phân giác góc BAC
a.Ta có:BM=CM=BC2BC2=102102=5(cm)
Vì AM là trung tuyến
=>AM là đường cao
Xét ΔABM vuông tại M có:
AB2=AM2+MB2(định lý pytago)
Hay:132=AM2+52
169=AM2+25
AM2=√144144
AM=12(cm)
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=2323MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng