K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

Nhờ làm câu d thôi

Mình còn câu í. Mình cho

8 tháng 4 2019

Câu c làm ntn v bn ?

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

19 tháng 8 2017


a) Phần thuận :

Theo đề bài MD // AC, ME // AB (gt) nên tứ giác ADME là hình bình hành.

Do I là trung điểm của DE (gt), do đó I là trung điểm của AM.

Kẻ ,  thì IK // AH.

Trong tam giác MAH, IK là đường trung bình nên IK = AH.

Vì 

...chịu

20 tháng 3 2020

A B C M E F P N Q

a,  xét tứ giác AFME có : 

AE // FM (Gt)

EM // AF (gt)

=> AFME là hình bình hành (đn)

=> AE = MF và EM = AF (tc)

=> Chu vi AEMF = 2AE + 2EM = 2(AE + EM)               (1)

EM // AC (Gt) mà ^EMB đồng vị ^ACB

=> ^EMB = ^ACB (đl)

^ABC = ^ACB do tam giác ABC cân tại A (gt)

=> ^EMB = ^ABC

=> tam giác EMB cân tại E (dh)

=> EM = EB (đn) và (1)

=> Chu vi AEMF = 2(AE + EB)

AE + EB = AB

=> Chu vi AEMF = 2AB

AB =  7 cm (Gt)

=> chu vi AEMF = 2.7 = 14

b, gọi EF cắt MN tại P

kẻ AQ _|_ EF

xét tam giác EPN và tam giác EPM có : EP chung

^EPN = ^EPM = 90

PM = PN do M đx với N qua EF

=> tam giác EPN = tam giác EPM (2cgv)

=> NE  = EM (2)

và ^NEP = ^MEP (đn)

^NEP + ^NEF = 180 (kb)

^MEP + ^MEF = 180 (kb)

=> ^NEF = ^MEF 

^MEF = ^EFA (slt MF // AE)

=> ^NEF  = ^AFE             (3)

^NEF + ^NEP = 180 (kb)

^AFE + ^AFQ = 180 (kb)

=> ^NEP = ^AFQ 

AF =EM do AEFM là hbh và (2) => NE = EF

xét tam giác NEP và tam giác AFQ có : ^NPE = ^AQF = 90

=> tam giác NEP = tam giác AFQ (ch-gn)

=> NP = AQ

NP _|_ EF; AQ _|_ AF (cv) => NP // AQ

=> NAQP là hbh

=> NA // EF và (3)

=> NEFA là hình thang cân

c, có NEA là góc ngoài của tam giác NEB => ^NEA = ^ENB + ^EBN 

NE = EM (Câu b); EB = EM (câu a) => EN = EB => tam giác ENB câ tại E (đn) => ^ENB = ^EBN

=> ^NEA = 2^EBN 

tương tự với góc EAM là góc ngoài của tam giác EBM => ^EAM = 2^EBM

=> ^NEA + ^EAM = 2(^EBN + ^EBM)

=> ^NEM = 2^NBM => ^NBM = ^NEM : 2

có : ^NEF + ^MEF = ^NEM mà ^NEF = ^MEF (câu b) => ^NEF = ^NEM : 2

=> ^NBM = ^NEF

^NBM = ^ABC + ^ABN 

^ABC = ^ACB ; ^ABN = ^ENB 

=> ^NEF = ^C + ^ENB

^ANE + ^NEF = 180 (tcp)

=> ^ANE + ^ENB + ^C = 180

=> ^BNA + ^C = 180

d, CHƯA NGHĨ RA