K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

tham khảo

+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)

=> MM là trung điểm của BC.BC.

=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).

=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).

+ Xét ΔABCΔABC có:

AB=AC=17cm(gt)AB=AC=17cm(gt)

=> ΔABCΔABC cân tại A.A.

Có AMAM là đường trung tuyến (gt).

=> AMAM đồng thời là đường cao của ΔABC.ΔABC.

=> AM⊥BC.AM⊥BC.

+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:

AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).

=> AM2+82=172AM2+82=172

=> AM2=172−82AM2=172−82

=> AM2=289−64AM2=289−64

=> AM2=225AM2=225

=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).

+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).

=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).

=> AG=23.15AG=23.15

=> AG=303AG=303

=> AG=10(cm).AG=10(cm).

Vậy AM=15(cm);AG=10(cm).

a: Xét ΔABM và ΔAMC có

AM chung

AB=AC

BM=CM

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC 

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

MB=MC=BC/2=16cm

AM=căn 20^2-16^2=12cm

AG=2/3*AM=8cm

b) Ta có: G là trọng tâm của ΔBAC(gt)

mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)

\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)

Ta có: ΔABC cân tại A(cmt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=6^2+8^2=100\)

hay AB=10(cm)

Vậy: AM=6cm; AB=10cm

a) Xét ΔABC có:

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

AM là đường phân giác ứng với cạnh BC(Gt)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên Tam giác ABM=tam giác ACM (c.g.c) Vì tam giác ABC cân tại A và AM là tia phân giác của góc BAC nên AM cũng là đường cao của tam giác ABC kẻ từ đỉnh A đến đường thẳng chứa cạnh BC. => AM _|_ BC. b) Ta có: Tam giác ABM = Tam giác ACM (cmt) =>BM=CM(2cạnh tương ứng) =>AM là đường trung tuyến của BC. Ta có: AM là đường trung tuyến của BC (cmt) BQ là đường trung tuyến của AC(gt) BQ cắt AM tại G (gt) => G là giao điểm của 3 đường trung tuyến trong tam giác ABC. =>G là trọng tâm của tam giác ABC. (đpcm) c) Ta có: BM=CM (cmt) => BM=CM=BC/2=18/2=9 (cm) Xét tam giác ABM vuông tại M (do AM_|_BC(cmt)) Áp dụng định lí Pitago ta có: AM^2+BM^2=AB^2 => AM^2=AB^2-BM^2 => AM^2=15^2-9^2 => AM^2=225-81 => AM^2= 144 Do AM>0 nên AM=√144=12cm Mà AG=2/3AM(tính chất 3 đường trung tuyến của tam giác) =>AG=2/3.12=8cm d) (Làm như bạn kia) CHÚC BẠN HỌC TỐT!!!
5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)