Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì \(AB\perp BI\) (gt) \(\Rightarrow\widehat{ABI}=90^o\) (đ/n), \(AC\perp CI\) (gt) \(\Rightarrow\widehat{ACI}=90^o\) (đ/n)
Xét \(\Delta ABI\) và \(\Delta ACI\) có: \(AB=AC\) (vì \(\Delta ABC\) cân tại A từ giả thiết), \(AI\) chung, \(\widehat{ABI}=\widehat{ACI}\left(=90^o\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.g.c\right)\Rightarrow IB=IC\) (2 cạnh tương ứng) (đpcm)
2. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng) \(\left(\widehat{MIB}=\widehat{MIC}\right)\)
Xét \(\Delta MBI\) và \(\Delta MCI\) có: \(IB=IC\) (cm câu a), \(MI\) chung, \(\widehat{MIB}=\widehat{MIC}\) (cmt)
\(\Rightarrow\Delta MBI=\Delta MCI\left(c.g.c\right)\Rightarrow MB=MC\) (2 cạnh tương ứng) (đpcm)
3. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng) \(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\) (đ/n)
Xét \(\Delta ABC\) có: \(AI\) là tia phân giác của \(\widehat{BAC}\) (cmt)
\(\Rightarrow AI\) là đường phân giác của \(\Delta ABC\) (đ/n), mà \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow AI\) đồng thời là đường cao của \(\Delta ABC\) (t/c tam giác cân)
\(\Rightarrow AI\perp BC\) (đ/n) (đpcm)
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE