Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE và ΔACE có
AB=AC
AE chung
BE=CE
Do đo: ΔABE=ΔACE
b: \(\widehat{ABE}=\widehat{ABC}-\widehat{EBC}=80^0-60^0=20^0\)
\(\widehat{EAB}=\dfrac{\widehat{BAC}}{2}=10^0\)
=>\(\widehat{AEB}=150^0\)
a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ
AC < AB ( 65 độ > 25 độ)
b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)
=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)
c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC
=> BEC = BAC = 90 độ
=> tam giác BEC vuông tại E (đpcm)
d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)
Câu hỏi của Nguyễn Minh Huy - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
A B C 9 25 0 20 0 D E F H I
Giải: a) Xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}\)= 1800
=> \(\widehat{A}\)= 1800 - \(\widehat{B}\)- \(\widehat{C}\)= 1800 - 250 - 200 = 1350
b) Ta có : góc EAB + góc BAD = 1800
=> góc EAB = 1800 - BAD = 1800 - 900 = 900
Xét t/giác ABE và t/giác ABD
có AE = AD (gt)
góc EAB = góc CAB = 900 (cmt)
AB : chung
=> t/giác ABE = t/giác ABD (c.g.c)
b) Ta có: t/giác ABE = t/giác ABD (cmt)
=> BE = BD (hai cạnh tương ứng)
=> góc EBA = góc ABD (hai góc tương ứng)
Xét t/giác BHE và t/giác BHD
có BE = BD (cmt)
góc EBH = góc HBD (cmt)
BH : chung
=> t/giác BHE = t/giác BHD (c.g.c)
d) Gọi giao điểm của DH và BE là I
Ta có : t/giác BHE = t/giác BHD (cmt)
=> HE = HD (hai cạnh tương ứng)
=> góc BEH = góc HDB (hai góc tương ứng)
Xét t/giác EIH và t/giác DFH
có góc BEH = góc HDB (cmt)
HE = HD (cmt)
góc IHE = góc FHD (đối đỉnh)
=> t/giác EIH = t/giác DFH (g.c.g)
=> góc EIH = góc HFC (hai góc tương ứng)
Mà góc HFC = 900 (EF \(\perp\)BD)
=> góc EIH = 900
=> DI \(\perp\)EB => DH \(\perp\)EB
A B C E H F
a) Xét \(\Delta\)ABE và \(\Delta\)FBE có :
BF=BA (gt)
\(\widehat{ABE}=\widehat{FBE}\) ( vì tia phân giác góc B )
BE chung (gt)
Do đó \(\Delta\)ABE = \(\Delta\)FBE (c-g-c)
b) Ta có :
ABE = \(\Delta\)FBE (cmt)
=> \(\widehat{EAB}=\widehat{EFB}=90^o\) ( 2 cặp góc tương ứng )
Vậy \(\widehat{EFB}\) = 90o
c) Vì AH \(\perp\) BC nên \(\widehat{AHB}\) = 90o
\(\widehat{EFB}\)=90o ( câu b )
=> \(\widehat{AHB}\) và \(\widehat{EFB}\) là 2 cặp góc đồng vị
=> AH//EF