K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

A A A B B B C C C D D D E E E 1 2 1 2 1

a) BD và CE theo thứ tự là phân giác của góc B và góc C (gt) nên \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B},\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)

mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của \(\Delta\)cân ABC)

do đó \(\widehat{B_1}=\widehat{C_2}\)

\(\widehat{A}\)chung

=> \(\Delta\)ABD = \(\Delta\)ACE(g.c.g)

=> AD = AE(hai cạnh tương ứng)

=> \(\Delta\)ADE cân ở A

b) \(\Delta\)AED cân tại đỉnh A nên \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)

\(\Delta\)ABC cân tại đỉnh A nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\)

Vậy DE // BC(hai góc so le trong) mà \(\widehat{B_1}=\widehat{B_2}\), do đó \(\widehat{A}=60^0\)\(\widehat{D_1}=\widehat{B_2}\)=> \(\Delta\)BED cân ở đỉnh E,do đó BE = ED(3)

c) \(\Delta\)AEC cân tại đỉnh A nên \(\widehat{AEC}=\widehat{ACE}=\frac{180^0-\widehat{A}}{2}\)

\(\Delta\)ABD cân tại đỉnh A nên \(\widehat{ABD}=\widehat{ADB}=\frac{180^0-\widehat{A}}{2}\)

=> \(\widehat{AEC}=\widehat{ABD}\)

=> CE // BD(hai góc so le trong) 

Mà \(\widehat{C_1}=\widehat{C_2}\),do đó \(\widehat{A}=60^0,\widehat{D_1}=\widehat{C_2}\)

=> \(\Delta\)CED cân ở đỉnh D nên ED = DC(4)

Từ (3) và (4) => BE = ED = DC

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

11 tháng 7 2017

A E D B C

a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:

    C = B,    CB chung,   EBC = DCB  \(\Rightarrow\)   \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)EC = DB

      \(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.

b) Ta có:

     C = \(\frac{180^o-A}{2}\),    E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )

c) Vì \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)BE = DC

17 tháng 5 2019

a )

Xét tam giác BAD và tam giác EAD có :

AE=AB ( gt )
\(\widehat{BAD}=\widehat{AED}\) ( do AD là tia p/g của \(\widehat{A}\))

AD là cạnh chung

nên tam giác BAD = tam giác EAD 

=> BD = ED ( hai cạnh tương ứng )

17 tháng 5 2019

b ) cÓ : \(\widehat{DBA}+\widehat{DBK}=180^o\)( hai góc kề bù) 

             \(\widehat{DEA}+\widehat{DEC}=180^o\)( hai góc kề bù ) 

mà \(\widehat{DEA}=\widehat{DBA}\Rightarrow\widehat{DBK}=\widehat{DEC}\)

xÉT tam giác DBK và tam giác DEC có :

\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )

BD = ED ( cm phần a )

\(\widehat{BDK}=\widehat{EDC}\)( hai góc đối đỉnh )

nên tam giác DBK = tam giác DEC ( g.c.g)

à phần a tam giác BAD = tam giác EAD ( c.g.c ) nhé!

24 tháng 6 2020

hình như thiếu đề bài nha bạn