Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E F x y M I K
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
Trên tia AM lấy điểm A’ sao cho AM = MA’
Dễ chứng minh được ∆AMC = ∆A’MB ( g.c.g)
A’B = AC ( = AE) và góc MAC = góc MA’B
AC // A’B => góc BAC + góc ABA’ = 180 0 (cặp góc trong cùng phía)
Mà góc DAE + góc BAC = 180 0 => góc DAE = góc ABA’
Xét ∆DAE và ∆ABA’ có : AE = A’B , AD = AB (gt)
góc DAE = góc ABA’ ∆DAE = ∆ABA’(c.g.c)
góc ADE = góc BAA’ mà góc HAD + góc BAA’ = 90 0
=> góc MAD + góc ADE = 90 0 . Suy ra MA vuông góc với DE
Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC và tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF
CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD
EAF + FAC + CAB + BAE = 3600
EAF + 900 + CAB + 900 = 3600
EAF + CAB + 1800 = 3600
EAF + CAB = 3600 - 1800
EAF + CAB = 1800
mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)
=> EAF = DBA
Xét tam giác EAF và tam giác ABD có:
EA = AB (gt)
EAF = ABD (chứng minh trên)
AF = BD (chứng minh trên)
=> Tam giác EAF = Tam giác ABD (c.g.c)
=> EF = BD (2 cạnh tương ứng)