Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H I K
Xét △ABC cân ở A có AH là đường cao
⇒AH là đường trung tuyến
⇒H là trung điểm của BC
⇒HB=HC=\(\frac{1}{2}\)BC=\(\frac{1}{2}.12=6\)(cm)
ADHT về cạnh và đường cao vào △AHC vuông ở C đường cao HI có
HC2=CI.AC
⇒62=CI.9
⇒CI=4(cm)
Vậy CI=4cm
AD tỉ số lượng giác vào △AHC vuông tại C có
sinHAC=\(\frac{HC}{AC}=\frac{6}{9}\)
⇒\(\widehat{HAC}\approx42^o\)
Mà △ABC cân ở A có AH là đường cao
⇒AH là phân giác của \(\widehat{A}\)
⇒\(2\widehat{HAC}=\widehat{A}\)
⇒\(\widehat{A}\)=84o
AD tỉ số lượng giác vào △ABK vuông ở K có
AK=AB.cosA
=9.cos 84o
\(\approx\)1(cm)
Ta có △ABC cân ở A
⇒\(\widehat{C}\)=\(\frac{180^o-84^o}{2}\)=48o
AD tỉ số lượng giác vào △BCK vuông ở K có
KC=BC.cosC
=12.cosC
\(\approx\)8(cm)
Ta có AK là đường cao của △ABC
⇒K∈AC
Lại có AK+KC=1+8=9=AC
⇒K nằm giữa A và C
a, Xét tam giác AHB vuông tại H, đường cao MH
\(AH^2=AM.AB\)( hệ thức lượng ) (1)
Xét tam giác AHC vuông tại H, đường cao HN
\(AH^2=AN.AC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3)
b, Xét tam giác AMN và tam giác ACB ta có :
^A _ chung
\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
Vậy tam giác AMN ~ tam giác ACB ( c.g.c )
\(\frac{MN}{BC}=\frac{AM}{AC}\)(4)
Ta có : BC = HB + HC = 9 + 4 = 13 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm
Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm
lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm
Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm
c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm
Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2
Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)
\(=39-\frac{108}{13}=\frac{399}{13}\)cm2
K A B C H I
a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)
=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.
b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C
Lại có I nằm giữa AC => K nằm giữa A và C
a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)
b) \(\Delta ABC\) cân tại điểm A.
\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn
=> A nằm trên mặt phẳng chứa A bờ BC.
\(\Rightarrow\Delta AHC\approx\Delta BKC\)
\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)
\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)
Vậy K nằm giữa A và C