Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E x H
c) Trong \(\Delta BME\)kẻ đường cao EH \(\Rightarrow EH\perp MB\)(1)
Vì \(\Delta BME\)là tam giác đều, EH là đường cao \(\Rightarrow\)EH là phân giác của \(\widehat{MEB}\)
\(\Rightarrow\widehat{BEH}=\widehat{MEH}=\frac{\widehat{BEM}}{2}=\frac{60^o}{2}=30^o\)
Xét \(\Delta BEC\)có: \(\widehat{CBE}=10^o\); \(\widehat{BCE}=20^o\)\(\Rightarrow\widehat{BEC}=150^o\)( tổng 3 góc trong tam giác )
Ta có : \(\widehat{BEH}+\widehat{BEC}=30^o+150^o=180^o\)\(\Rightarrow\)C, E, H thẳng hàng (2)
Từ (1) và (2) \(\Rightarrow CE\perp MB\)(đpcm)
B D x K C H A y 1 2 3
Có Bx _|_ BC tại B (gt)
=> ^CBx = 90o
=> B1 + B2 = 90o (1)
Cmtt được B2 + B3 = 90o (2)
Từ (1)(2) => B1 = B3
Xét ∆BAD và ∆BEC có :
BD = BC (gt)
B1 = B3 (cmt)
BA = BE
=> ∆BAD = ∆BEC (c-g-c)
=> DA = CE
b) Gọi H là giao điểm của DA và CE
và K là ______________ DA và BC
Ta có ^HKC = ^BKA (đối đỉnh) (3)
Có ∆BAD = ∆BEC (cmt)
=> ^BDA = ^BCE
Hay BDK = HCK
Từ (3),(4) => HKC + HCK = BKD + ADK (5)
....đoạn tiếp để sau làm cho :v
x y D B A C E
A ) Ta có : \(\Delta DAB=\Delta CEB\)( c . g . c )
\(\Rightarrow BE=BA\)
\(\Rightarrow\widehat{DBA}=\widehat{CBE}\)( PHỤ \(\widehat{ABC}\))
\(\Rightarrow DA=EC\)( đpcm)
b) Kéo dài AB cắt BC tại \(I\)cắt EC tại K
+ \(\widehat{ICK}=\widehat{IDB}\)( do (* ) )
+ \(\widehat{DBI}=\widehat{CIK}\)( VÌ 2 GÓC ĐỐI ĐỈNH )
\(\Rightarrow\widehat{ICK}+\widehat{CIK}=\widehat{IDB}+\widehat{DIB}\)
Mà \(\widehat{IDB}+\widehat{DIB}=90\)
Do tam giác DBI vuông tại B nên ICK + CIK = \(90^o\)
\(\Rightarrow\widehat{CIK}=90^o\)
\(\Rightarrow DA\perp EC\)
Chúc bạn học tốt !!!