Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}BF//GE\left(gt\right)\\FG//BE\left(gt\right)\end{matrix}\right.\Rightarrow BFGE\) là hbh \(\Rightarrow BF=GE\)
Mà \(BF=AF\left(F.là.trung.điểm.AB\right)\Rightarrow AF=GE\)
Mà \(AF//GE(BF//GE)\)
Do đó \(AFEG\) là hbh
\(b,\left\{{}\begin{matrix}BD=DC\\AE=EC\end{matrix}\right.\Rightarrow ED\) là đtb tg ABC \(\Rightarrow ED//AB\)
Mà \(EG//AB\left(gt\right)\)
Theo tiên đề Ơ-clít ta được EG trùng ED hay E,G,D thẳng hàng
\(c,\) ED là đtb tg ABC nên \(ED=\dfrac{1}{2}AB=AF=BF=GE\left(cm.trên\right)\)
Do đó E là trung điểm GD
Mà E là trung điểm AC nên ADCG là hbh
Do đó \(CG=AD\)
a: Xét tứ giác BFGE có
BF//GE
BE//FG
=>BFGE là hbh
=>GE=BF
=>GE=AF
mà GE//AF
nên AGEF là hình bình hành
b: Xét ΔCAB cso CD/CB=CE/CA
nên DE//AB
=>D,E,G thẳng hàng
DE//AB
=>DE/AB=CD/CB=1/2
=>DE=AF=GE
=>E là trung điểm của DG
Xét tứ giác ADCG có
E là trung điểm chung của AC và DG
=>ADCG là hbh
=>CG=AD