Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ IF vuông góc với BC \(\left(IF\in BC\right)\)
Xét tam giác IDB và tam giác IFB ta có :
\(\widehat{BDI}=\widehat{BFI}\left(=90^o\right)\)
\(BI\): cạnh chung
\(\widehat{IBD}=\widehat{IBF}\)( theo giả thiết )
\(\Rightarrow\Delta IDB=\Delta IFB\)( cạnh huyền - góc nhọn )
\(\Rightarrow ID=IE\)( hai cạnh tương ứng ) (1)
Tương tự : \(\Delta IEC=\Delta IFC\)( cạnh huyền - góc nhọn )
\(\Rightarrow IE=IF\)( hai cạnh tương ứng ) (2)
Từ (1) và (2) => ID = IE ( đpcm )
a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có
BI chung
\(\widehat{DBI}=\widehat{FBI}\)
Do đó: ΔBDI=ΔBFI
=>ID=IF
Xét ΔCFI vuông tại F và ΔCEI vuông tại E có
CI chung
\(\widehat{FCI}=\widehat{ECI}\)
Do đó: ΔCFI=ΔCEI
=>IE=IF
b: IE=IF
ID=IF
Do đó: IE=ID
Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
ID=IE
Do đó: ΔADI=ΔAEI
=>\(\widehat{DAI}=\widehat{EAI}\)
=>\(\widehat{BAI}=\widehat{CAI}\)
=>AI là phân giác của \(\widehat{BAC}\)
Xét △ ABC có:
IB là tia phân giác \(\widehat{ABC}\)
IC là tia phân giác \(\widehat{ACB}\)
⇒ I là điểm đồng quy của 3 tia phân giác △ ABC
Suy ra: AI là phân giác \(\widehat{BAC}\)
Suy ra: I là tâm đường tròn nội tiếp △ ABC
R = d ( I, AB ) = d ( I, AC )
⇒ ID = IE
Xét △ ADI và △ AIE có
AI chung
\(\widehat{DAI}=\widehat{IAE}\)
ID = IE
⇒ △ADI = △AIE ( c - g - c )
⇒ AD = AE
Các tia phân giác góc B, C cắt nhau tại I
\(\Rightarrow\)AI là phân giác góc A
\(\Rightarrow\)\(\widehat{DAI}=\widehat{EAI}\)
Xét 2 tam giác vuông \(\Delta DAI\)và \(\Delta EAI\)có:
\(AI:\)cạnh chung
\(\widehat{DAI}=\widehat{EAI}\)(cmt)
suy ra: \(\Delta DAI=\Delta EAI\)(ch_gn)
\(\Rightarrow\)\(AD=AE\)
Xét ΔBDI vuông tại D và ΔBEI vuông tại E có
BI chung
góc DBI=góc EBI
Do đó: ΔBDI=ΔBEI
=>ID=IE
Xét ΔAEI vuông tại E và ΔAFI vuông tại F có
AI chung
góc EAI=góc FAI
Do đó: ΔAEI=ΔAFI
=>IE=IF=ID
mình làm được 1 phần à.
THeo định lý Pytago có :
BC2 = AB2 + AC2 => BC2 = 4,752+ 6,252 => BC = \(\sqrt{4,75^2+6,25^2}\)
=> BC = 43,8125 \(\approx\) 43,81 (cm)
Xét 2 tam giác vuông BDI và BEI có :
BI chung
Góc DBI = Góc EBI (vì BI là tia phân giác của góc B)
=> tam giác BDI = tam giác BEI (ch-gn)
=> BD = BE = 4,75 (cm)
Xét tam giác EIC và tam giác FIC có:
IC chung
\(\widehat{ECI}\) = \(\widehat{FCI}\)
\(\widehat{IEC}\) = \(\widehat{IFC}\)
Suy ra 2 tam giác này bằng nhau (1)
xét tam giác DBI và tam giác FBI có:
BI chung
góc FBI bằng góc IBD
góc BDI bằng góc IFB
Suy ra 2 tam giác này bằng nhau (2)
Xét tam giác BIF và tam giác CIF có:
IF chung
góc IFC bằng góc IFB
góc IBF bằng góc ICF
Suy ra hai tam giác này bằng nhau (3)
TỪ (1), (2), (3) TA SUY RA ĐOẠN THẲNG IE = ID = IF ( 3 cạnh tương ứng)