Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ui cho mình xin lỗi nãy mình bấm nhầm nhé )))):
Xét ∆ABK và ∆ACG:
A: góc chung
\(\widehat{AKB}=\widehat{AGC}=90^o\)
=> ∆ABK\(\sim\)∆ACG(g.g)
b) Vì ∆ABK\(\sim\)∆ACG (theo câu a)
=> \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\Leftrightarrow AB.AG=AC.AK\)
Vì \(\dfrac{AB}{AK}=\dfrac{AC}{AG}\left(cmt\right)\)
=>\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\)
Xét ∆ABC và ∆AKG:
A: góc chung
\(\dfrac{AB}{AC}=\dfrac{AK}{AG}\left(cmt\right)\)
=> ∆ABC~∆AKG(c.g.c)
b) Vì H là giao điểm của 2 đường cao BK và CG
=> H là trực tâm ∆ABC
=> AH vuông góc với BC
Gọi giao điểm AH và BC là I.
Xét ∆BHI và ∆BCK:
B: góc chung
\(\widehat{BIH}=\widehat{BKC}=90^o\)
=> ∆BHI~∆BCK(g.g)
=> \(\dfrac{BH}{BI}=\dfrac{BC}{BK}\)
=> BH.BK=BC.BI(1)
Xét ∆CHI và ∆CBG:
C: góc chung
\(\widehat{CIH}=\widehat{CGB}=90^o\)
=> ∆CHI~∆CBG(g.g)
=> \(\dfrac{CH}{CI}=\dfrac{BC}{CG}\)
=> CH.CG=BC.CI(2)
Từ (1) và (2)
suy ra BH.BK+CH.CG=BI.BC+CI.BC=BC(CI+BI)=BC.BC=BC2
Dễ nhưng lười đánh máy:v
a) Xét ∆ABK và ∆ACG:
A: góc chung
\(\widehat{AKB}=\widehat{AGC}=90^o\)
a: Xét ΔABK vuông tại K và ΔACG vuông tại G có
góc A chung
Do đó: ΔABK\(\sim\)ΔACG
b: Ta có: ΔABK\(\sim\)ΔACG
nên AB/AC=AK/AG
hay \(AB\cdot AG=AK\cdot AC\)
Xét ΔABC và ΔAKG có
AB/AK=AC/AG
góc BAC chung
Do đó: ΔABC\(\sim\)ΔAKG
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
+) Câu d sửa đề thành BF . BA + CE . CA = BC2
a, Xét △AFH vuông tại F và △ADB vuông tại D
Có: FAH là góc chung
=> △AFH ᔕ △ADB (g.g)
b, Vì △AFH ᔕ △ADB (cmt) \(\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\)\(\Rightarrow\frac{AB}{AD}=\frac{AH}{AF}\)
Xét △ABH và △ADF
Có: \(\frac{AB}{AD}=\frac{AH}{AF}\)(cmt)
BAH là góc chung
=> △ABH ᔕ △ADF (c.g.c)
c, Xét △HFB vuông tại F và △HEC vuông tại E
Có: FHB = EHC (2 góc đối đỉnh)
=> △HFB ᔕ △HEC (g.g)
\(\Rightarrow\frac{HF}{HE}=\frac{HB}{HC}\)
=> HF . HC = HE . HB
d, Sửa đề thành BF . BA + CE . CA = BC2
Xét △HEC vuông tại E và △AFC vuông tại F
Có: HCE là góc chung
=> △HEC ᔕ △AFC (g.g)
\(\Rightarrow\frac{EC}{FC}=\frac{HC}{AC}\)
=> FC . HC = EC . AC (1)
Xét △HFB vuông tại F và △AEB vuông tại E
Có: FBH là góc chung
=> △HFB ᔕ △AEB (g.g)
\(\Rightarrow\frac{FB}{EB}=\frac{HB}{AB}\)
=> FB . AB = EB . HB (2)
Xét △BFC vuông tại F và △HDC vuông tại D
Có: HCD là góc chung
=> △BFC ᔕ △HDC (g.g)
\(\Rightarrow\frac{FC}{DC}=\frac{BC}{HC}\)
=> FC . HC = BC . DC (3)
Xét △BEC vuông tại E và △BDH vuông tại D
Có: HBD là góc chung
=> △BEC ᔕ △BDH (g.g)
\(\Rightarrow\frac{BC}{BH}=\frac{BE}{DB}\)
=> BC . DB = BE . BH (4)
Từ (1) và (3) => EC . AC = BC . DC
Từ (2) và (4) => FB . AB = BC . DB
Ta có: BF . BA + CE . CA = BC . BD + BC . DC = BC . (BD + DC) = BC . BC = BC2
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BK*BC=BD*BH
a: Xét ΔABK vuông tại K và ΔACG vuông tại G có
góc BAK chung
Do đó: ΔABK\(\sim\)ΔACG
b: ta có: ΔABK\(\sim\)ΔACG
nên AB/AC=AK/AG
hay \(AB\cdot AG=AK\cdot AC\)
Xét ΔABC và ΔAKG có
AB/AK=AC/AG
góc BAC chung
Do đó: ΔABC\(\sim\)ΔAKG