K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAFH vuông tại F và ΔADB vuông tại D có

góc FAH chung

=>ΔAFH đồng dạng ΔADB

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

góc FEH=góc BAD

góc DEH=góc FCB

mà góc BAD=góc FCB

nên góc FEH=góc DEH

=>EH là phân giác của góc FED

9 tháng 4 2023

giúp em với ạ:(

a: Kẻ AN là đường kính của (O)

góc ABN=1/2*180=90 độ

=>BN//CH

góc ACN=1/2*180=90 độ

=>CH//BN

=>BHCN là hình bình hành

=>M là trung điểm của HN

Xét ΔAHN có NM/NH=NO/NA

nên OM//AH và OM=AH/2

=>AH=2OM

c: ΔOKL cân tại O

mà OI là đường cao

nên I là trung điểm của KL

23 tháng 4 2019

A B C D F E H P Q M 1 1 2

Ta có : AQ // CH ; AP // BH nên Tứ giác AQHP là hình bình hành nên AP = HQ

để C/m CA.AH = CB.AP hay CA.AH = CB.HQ

Ta có : \(\widehat{BHD}=90^o-\widehat{HBD}\)\(\widehat{BCA}=90^o-\widehat{HBD}\)

\(\Rightarrow\widehat{BHD}=\widehat{BCA}\)

Mà \(\widehat{BHD}=\widehat{AHQ}\)( đối đỉnh ) nên \(\widehat{AHQ}=\widehat{BCA}\) 

Ta có : 

\(\widehat{HAQ}=\widehat{HAC}+\widehat{A_2}=\widehat{HAC}+\widehat{C_1}=180^o-\widehat{AHC}=180^o-\left(90^o+\widehat{A_1}\right)=90^o-\widehat{A_1}\)

Mà \(\widehat{ABC}=90^o-\widehat{A_1}\)

\(\Rightarrow\widehat{ABC}=\widehat{HAQ}\)

Xét \(\Delta ABC\)và \(\Delta HQA\)có :

\(\widehat{ACB}=\widehat{AHQ}\)( cmt ) ; \(\widehat{ABC}=\widehat{HAQ}\)

\(\Rightarrow\Delta ABC\approx\Delta QAH\left(g.g\right)\)

\(\Rightarrow\frac{AC}{BC}=\frac{HQ}{AH}\)hay \(\frac{AC}{BC}=\frac{AP}{AH}\) \(\Rightarrow\)AC.AH = BC.AP

13 tháng 10 2023

D ở đây ra vậy em?

13 tháng 10 2023

Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K

a: CK vuông góc AC

BH vuông góc AC

Do đó: CK//BH

BK vuông góc AB

CH vuông góc AB

Do đó: BK//CH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

 

Kẻ CG//MN(G thuộc AB), CG cắt AD tại K

=>HI vuông góc CK

=>I là trựctâm của ΔHCK

=>KI vuông góc CH

=>KI//AB

=>KI//BG

=>K là trung điểm của CG

MN//GC

=>MH/GK=HN/KC

mà GK=KC

nên MH=HN