K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

Hình hơi rối, bạn tự vẽ hình nhé!

Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.

Vì \(ME=MA=MH\)( tính chất trung tuyến )

Kết hợp tính đối xứng của điểm S ta có: 

\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)

=> Tứ giác MESB nội tiếp

\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)

Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)

Nên tứ giác KSCE cũng nội tiếp

=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)

Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\) 

Nên tứ giác RBCE nội tiếp

=> \(\widehat{BRC}=\widehat{BEC}=90^o\)

Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)

Nên K là trực tâm của \(\Delta BMC\)

1 tháng 2 2023

loading...  loading...  loading...  loading...  

1 tháng 2 2023

Đến từ quanda

17 tháng 12 2023

Ta có: ΔEAH vuông tại E

mà EI là đường trung tuyến

nên IE=IH

=>ΔIEH cân tại I

=>\(\widehat{IHE}=\widehat{IEH}\)

mà \(\widehat{IHE}=\widehat{BHD}\)(hai góc đối đỉnh)

và \(\widehat{BHD}=\widehat{BCE}\left(=90^0-\widehat{EBC}\right)\)

 nên \(\widehat{IEH}=\widehat{BCE}\)

Ta có: ΔEBC vuông tại E

mà EO là đường trung tuyến

nên OE=OB

=>ΔOEB cân tại O

=>\(\widehat{OEB}=\widehat{OBE}\)

Ta có: \(\widehat{IEO}=\widehat{IEH}+\widehat{OEH}\)

\(=\widehat{EBC}+\widehat{ECB}=90^0\)

=>ΔIEO vuông tại E

Ta có: ΔAFH vuông tại F

mà FI là đường trung tuyến

nên FI=IH

=>FI=IE

=>I nằm trên đường trung trực của FE(1)

Ta có: ΔBFC vuông tại F

mà FO là đường trung tuyến

nên \(FO=\dfrac{BC}{2}\)

mà EO=BC/2

nên FO=EO

=>O nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra IO là đường trung trực của EF

=>IO\(\perp\)EF tại K và K là trung điểm của FE

Xét ΔIEO vuông tại E có EK là đường cao

nên \(IK\cdot IO=IE^2\)

=>\(IK\cdot IO=\left(\dfrac{1}{2}AH\right)^2=\dfrac{1}{4}AH^2\)

=>\(AH^2=4\cdot IK\cdot IO\)

30 tháng 3 2022
Ai giúp em với😢

A B C D I R H K J M N O

Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB

Ta có \(DH.DA=DB.DC\)(1)

Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)

Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên

\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)

\(\Rightarrow AK.HD=AD.HK\)

\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)

\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)

\(\Leftrightarrow2.AD.DH=2.DK.DJ\)

\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)

Từ (1) và (2) ta  có\(DK.DJ=DH.DA\)

=> K là trực tâm của tam giác IBC

1: góc ABP=1/2*sđ cung AP=90 độ

=>BP//CH

góc ACP=1/2*sđ cung AP=90 độ

=>CP//BH

mà BP//CH

nên BHCP là hình bình hành

=>BC cắt HP tại trung điểm của mỗi đường

=>M là trung điểm của HP