K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

A B C D M E N F

+) Kẻ NF // AB 

=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF

=>  Tam giác MNF và tam giác FBM (g- c- g) 

=> MN = BF và BM = NF => BM = NF = AD

+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC 

=> DE + MN = FC + BF = BC = không đổi

Vậy...

6 tháng 12 2016

qua N kẻ đường thẳng song song với AB cắt BC tại K .

Vì EN song song với BK; NK song song với EB nên EB=NK;EN=BK (tính chất đoạn chắn)

nên NK=AD. Vì DM song song với BC nên góc( từ sau góc mình kí hiệu là >) DMA = >ACB . Vì NK song song với AB nên >A= >KNC \(\Rightarrow\) >B=>NKC Do đó ΔADM=ΔNKC (g.c.g). nên DM=KC

Suy ra DM+EN=BK+CK=BC(dpcm)

28 tháng 12 2017

Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.

Xét ∆BEK và ∆NKE, ta có:

ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)

EK cạnh chung

ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)

Suy ra: ∆BEK = ∆NKE (g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét ∆ADM và ∆NKC, ta có:

ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)

AD = NK (vì cùng bằng BE)

ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)

Suy ra: ∆ADM = ∆NKC (c.g.c)

=>DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM