K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)

13 tháng 1 2020

A B C H K I

   GT      

Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC,

AB tại H và K. Hai đường này cắt nhau tại I.

KLCMR : AI là tia phân giác góc A.

Có : \(\Delta\)ABC cân tại A.

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)

Xét \(\Delta\)BHC và \(\Delta\)CKB có :

\(\widehat{BHC}=\widehat{CKB}=90^0\)

\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)

Mà : \(\widehat{KBC}=\widehat{HCB}\)

 \(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)            

  +)  \(\Leftrightarrow\Delta\)IBC cân tại I                     +) Từ (1)

       \(\Leftrightarrow IB=IC\)(2)                       \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)

Lại có do \(\Delta\)ABC cân tại A 

\(\Leftrightarrow AB=AC\) (4)

Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)

\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )


 

25 tháng 4 2016

a)ta co: dh=dk(tc tia phan giac cua mot goc)

         goc d1=d2(gt)

         da: canh chung

 => hk=dk => da la duong trung truc cua hk.

=> dhk la tam giac deu.

b) loang ngoang kho hieu luc khac giai

26 tháng 4 2016

A B C D K H I

a. Do  D thuộc đường phân giác của góc BAC nên DH = DK, hay ta, giác DHK cân.

Cũng do AD là phân giác của góc BAC nên \(\widehat{KAD}=\widehat{DAH}=60^0\)

Lại có: \(\widehat{KAD} + \widehat{ADK}=90^0, \widehat{KAD}=60^0 \Rightarrow \widehat{ADK}=30^0.\)

Tương tự như vậy, \(\widehat{ADH}=30^0\). Từ đó ta dễ thấy rằng \(\widehat{HDK}=60^0\).

Tam giác cân DHK có một góc bằng \(60^0\) nên DHK là tam giác đều.

b. Ta thấy góc IAC kề bù với góc BAC nên \(\widehat{IAC}=180^0-120^0=60^0\)

Lại có do AD song song CI nên \(\widehat{ACI}=\widehat{DAC}=60^0\) (So le trong)

Tam giác ACI có 2 góc bằng \(60^0\) nên góc còn lại cũng bằng \(60^0\) và đó là tam giác đều.

PS: Chú ý đến các giải thiết liên quan tới đối tượng cần chứng minh để tìm cách giải em nhé, chúc em học tốt ^^

a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có

AD chung

AH=AI

=>ΔAHD=ΔAID

=>góc HAD=gócIAD

=>AD là phân giác của góc HAI

b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có

DH=DI

góc HDM=góc IDC

=>ΔDHM=ΔDIC

=>DM=DC

=>ΔDMC cân tại D

c: AH+HM=AM

AI+IC=AC

mà AH=AI và HM=IC

nên AM=AC

=>ΔAMC cân tại A

mà AN là trung tuyến

nên AN vuông góc MC

Xét ΔCAM có

AN,MI,CH là các đường cao

=>AN,MI,CH đồng quy