K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) cho tam giác ABC có góc A / 3 = goc B / 4 = góc C/5. Tính góc A,B,C2) cho ABC có 2 . góc A = 3 . góc B = 4 . góc C. Tính góc A,B,C3) cho ABC có góc A + góc B= góc C,  góc B = 2 lần góc A. Vẽ BD là phân giác của góc ABC, D thuộc AC. Tính góc BDC, góc BDA.4) Cho ABC có góc A = 90*, vẽ BE là phân giác của góc ABC, E thuộc AC. chứng minh : a) góc BEC là góc tù b) Tính góc C biết góc BEC = 110*5) cho tam giác ABC có góc B - góc C = 40*,...
Đọc tiếp

1) cho tam giác ABC có góc A / 3 = goc B / 4 = góc C/5. Tính góc A,B,C
2) cho ABC có 2 . góc A = 3 . góc B = 4 . góc C. Tính góc A,B,C
3) cho ABC có góc A + góc B= góc C,  góc B = 2 lần góc A. Vẽ BD là phân giác của góc ABC, D thuộc AC. Tính góc BDC, góc BDA.
4) Cho ABC có góc A = 90*, vẽ BE là phân giác của góc ABC, E thuộc AC. chứng minh : a) góc BEC là góc tù b) Tính góc C biết góc BEC = 110*
5) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB?          b) Vẽ đường cao AH, tính góc HAD
6) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB?          b) Vẽ đường cao AH, tính góc HAD

mỗi bạn giải giúp mik 1 câu nhé. đa tạ - sẽ tick nhaaaa. mình sắp kiểm tra bài này rồi pleaseee

1
17 tháng 7 2019

#)Giải : 

Bài 1 :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)

\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)

Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)

Bài 2 :

Áp dụng tính chất tỉ lệ thức :

\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)

\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)

Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^

6 tháng 6 2019

A B C D O 1 2 3 4

Có : \(AB< OA+OB;BC< OB+OC;CD< OC+OD;DA< OD+OA\)

\(P_{ABCD}=2p=AB+BC+CD+DA< 2\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(p< OA+OB+OC+OD\)

Lại có : \(OA< AB-OB;OB< BC-OC;OC< CD-OD;OD< DA-OA\)

Cộng vế theo vế từng bđt trên ta được : 

\(OA+OB+OC+OD< AB+BC+CD+DA-\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(2\left(OA+OB+OC+OD\right)< AB+BC+CD+DA\) (*) 

Có tiếp -,- : 

\(OA< AB+OB;OA< DA+OD\)\(\Rightarrow\)\(2OA< AB+DA+OB+OD\)

\(OB< AB+OA;OB< BC+OC\)\(\Rightarrow\)\(2OB< AB+BC+OA+OC\)

\(OC< BC+OB;OC< CD+OD\)\(\Rightarrow\)\(2OC< BC+CD+OB+OD\)

\(OD< CD+OC;OD< DA+OA\)\(\Rightarrow\)\(2OD< CD+DA+OC+OA\)

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 2\left(AB+BC+CD+DA\right)+2\left(OA+OB+OC+OD\right)\)

\(< 2\left(AB+BC+CD+DA\right)+\left(AB+BC+CD+DA\right)\) ( kết hợp với (*) ) 

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 3\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow\)\(OA+OB+OC+OD< 3.\frac{AB+BC+CD+DA}{2}=3.\frac{2p}{2}=3p\)

Vậy \(p< OA+OB+OC+OD< 3p\)

6 tháng 10 2016

mới có 2 yếu tố chưa đủ để tính các yếu tố còn lại, bn xem lại đề bài

22 tháng 2 2020

Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath