Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 20 15 12
Xét \(\Delta ADB\)vuông tại D có :
\(AD^2+BD^2=AB^2\)( Định lý Pytago )
\(\Rightarrow12^2+BD^2=15^2\)
\(\Rightarrow BD^2=15^2-12^2\)
\(\Rightarrow BD^2=81\)
\(\Rightarrow BD=9\) ( Do BD > 0 )
Xét \(\Delta ADC\)vuông tại D có :
\(AD^2+DC^2=AC^2\)
\(\Rightarrow12^2+DC^2=20^2\)
\(\Rightarrow DC^2=20^2-12^2\)
\(\Rightarrow DC^2=256\)
\(\Rightarrow DC=16\)( vì DC>0 )
\(\Rightarrow BC=CD+DB=16+9=25\)
Có \(25^2=20^2+15^2\)
\(\Rightarrow\Delta ABC\)vuông tại A.
Vậy ...
gọi 3 cạnh của Δlà a,b,c (a,b,c >0)
3 chiều cao của Δ là x,y,z (x,y,z>0)
ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\left(k>0\right)\)
\(\Rightarrow\)a=2k ;b=3k ; c=4k
ta có : 2S=a.x=b.y=c.z=2k.x=3k.y=4k.z ( S là diện tích )
\(\Rightarrow2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
vậy 3 chiều cao tương ứng tỉ lệ vs 6;4;3
cho mk hỏi là tại sao từ 2x=3y=4z=>đc2x/12=3y/12=4z/12 zậy bn
Gọi a,b,c lần lượt là các góc ngoài của tam giác tỉ lệ với các số 4;5;6
\(\frac{a}{4}\)=\(\frac{b}{5}\)=\(\frac{c}{6}\) và a+ b+c = 180
Áp dụng tính chất của dãy tỉ số = nhau, ta có:
\(\frac{a}{4}\)=\(\frac{b}{5}\)=\(\frac{c}{6}\)= \(\frac{a+b+c}{4+5+6}\)=\(\frac{180^{ }}{15}\)= 12
Vậy \(\frac{a}{4}\)=12 => a= 48
\(\frac{b}{5}\)= 12 => b= 30
\(\frac{c}{6}\)=12 => c= 72
Vậy các góc ngoài của tam giác tương ứng tỉ lệ vs các số lần lượt là: 480 ; 300 và 720.
Chúc a hk tốt ^^
Làm lại : Kí hiệu abc = h1h2h2
Theo bài ra ta có : \(\frac{a.h_1}{20}=\frac{b.h_2}{15}=\frac{c.h_3}{12}\)
Đặt \(\frac{h_1}{20}=\frac{h_2}{15}=\frac{h_3}{12}=k\)
\(ah_1=bh_2=ch_3\)
\(\Leftrightarrow a.20k=b.15k=c12k\)
\(\Leftrightarrow20k=15k=12k\)
Tương ứng vs : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k_1\)
\(\Rightarrow\hept{\begin{cases}a=3k_1\\b=4k_2\\c=5k_3\end{cases}\Rightarrow C^2=a^2+b^2}\)
Vậy \(\Delta\)ABC là tam giác vuông
Gọi độ dài 3 đường cao lần lượt là : x;y;z (z;y;z > 0)
Theo bài ra ta có : \(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)và x + y + z = 180^0
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{180}{47}\)
\(\Leftrightarrow\frac{x}{20}=\frac{180}{47}\Leftrightarrow x=\frac{9}{47}\)
\(\Leftrightarrow\frac{y}{15}=\frac{180}{47}\Leftrightarrow y=\frac{12}{47}\)
\(\Leftrightarrow\frac{z}{12}=\frac{180}{47}\Leftrightarrow z=\frac{15}{47}\)
Suy \(\Delta\)ABC là tam giác thường (P/s : cj ko chắc lắm)