Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét ΔABM và ΔMCE: AM=ME
\(\widehat{AMB}=\widehat{CME}\)
BM=MC
⇒ ΔABM = ΔMCE (c.g.c)
⇒ CE=AB ( 2 cạnh tương ứng)
⇒ \(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)
Vì AB<AC
⇒ CE<AC
Xét ΔACE có: CE< AC
⇒ \(\widehat{MAC}= \widehat{CEM}\)
mà \(\widehat{BAM}=\widehat{CEM}\) (cmtrn)
⇒ \(\widehat{BAM}=\widehat{MAC}\) (đpcm)
A B C x D M
a, Xét t/g BAM và t/g CAM có:
AB = AC (gt)
MB = MC (gt)
AM : cạnh chung
Do đó t/g BAM = t/g CAM (c.c.c)
b, Vì AB = AC (gt) => t/g ABC cân tại A => góc B = góc C
c, Ta có: góc xAD + góc CAD = góc B + góc C
Mà góc xAD = góc CAD ; góc B = góc C
=> \(2\widehat{CAD}=2\widehat{C}\)
=> góc CAD = góc C
Mà 2 góc này ở vị trí so le trong
=> AD // BC
a,Vì tam giác ABC có AB=AC
=>tam giác ABC cân tại A.
M là trung điểm BC=>BM=MC
Có AM là cạnh chung.
=>tam giác BAM=CAM
b,Do tam giác ABC cân tại A
=>^B=^C
A A A B B B C C C D D D M M M 1 2
Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA
Xét \(\Delta AMB\)và \(\Delta DMC\)có :
AM = DM(cmt)
\(\widehat{MAB}=\widehat{MDC}\)
MB = MC(vì M là trung điểm của BC)
=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)
\(AB=CD\)(hai cạnh tương ứng)
Ta có : AC > AB, AB = CD nên AC > CD
\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)
Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)
Gợi ý :
Tam giác BMA = tam giác CMD ( c. g. c )
=> AB = CD ; góc BAM = góc MDC
ta có : AB < AC
=> CD < AC
=> góc CAD < góc CDA ( qh ... )
hay góc CAM < góc CDM
mà góc CDM = góc BAM
=> Góc CAM < Góc BAM
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
Mlà trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=CD
=>CD<AC
=>\(\widehat{CAM}< \widehat{CDA}\)
mà \(\widehat{CDA}=\widehat{BAM}\)
nên \(\widehat{CAM}< \widehat{BAM}\)