Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: BN=6-4=2(cm)
Xét ΔCBN vuông tại B có
\(CN^2=BN^2+BC^2\)
hay \(CN=2\sqrt{17}\left(cm\right)\)
a, Ta có:
\(AB^2+BC^2=6^2+8^2=36+64=100\left(cm\right)\)
\(AC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại B (định lý Pi-ta-go đảo)
b, Ta có: \(BN=AB-AN=6-4=2\left(cm\right)\)
Xét ΔCBN vuông tại B có:
\(NB^2+BC^2=CN^2\\ \Rightarrow CN=\sqrt{NB^2+BC^2}\\ \Rightarrow CN=\sqrt{2^2+8^2}\\ \Rightarrow CN=2\sqrt{17}\left(cm\right)\)
a) Ta có: \(6^2+8^2=36+64=100\)
\(10^2=100\)
\(\Rightarrow\)\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(\Delta ABC\)vuông tại A
b) \(\Delta ABC\)\(\perp\)\(A\)
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}=90^0\) (1)
\(\Delta ABH\)\(\perp\)\(H\)
\(\Rightarrow\)\(\widehat{BAH}+\widehat{ABH}=90^0\) (2)
Từ (1) và (2) suy ra: \(\widehat{BAH}=\widehat{C}\) (đpcm)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC và AB=EC
c: Xét ΔBCD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔBCD cân tại C
d: Xét ΔOBC có
OM là đường cao
OM là đường trung tuyến
Do đó: ΔOBC cân tại O
Suy ra: OB=OC(1)
Xét ΔOBD có
OA là đường cao
OA là đường trung tuyến
Do đó: ΔOBD cân tại O
Suy ra: OB=OD(2)
Từ (1) và (2) suy ra OB=OC=OD
hay O cách đều ba đỉnh của ΔBDC
c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm
a) Xét tam giác ABC có:
BC2 = 102 = 100 (cm)
AB2 + AC2 = 62 + 82 = 36 + 64 = 100 (cm)
=> BC2 = AB2 + AC2 (= 100)
=> Tam giác ABC vuông tại A (định lý Pytago đảo)
b) MB = MD (gt) => M là trung điểm BD
Xét Tứ giác ABCD có:
M là trung điểm của BD (cmt)
M là trung điểm của AC (gt)
=> ABCD là hình bình hành (dhnb)
=> AB // CD (Tính chất hình bình hành)
Trong t/g ABC có :
\(AB^2+BC^2=6^2+8^2=36+64=100\) (1)
\(AC^2=10^2=100\) (2)
từ (1) và (2) => \(AC^2=AB^2+BC^2\)
=> t/g ABC vuông tại B ( đ/lí pytago đảo )
Vậy ....
Ta Có : NB=AB-AN ( N thuộc AB )
NB=6-4=2 (cm)
Xét t/g NBC có : góc NBC = 90* ( t/G ABC cân tại B )
=> NC^2=NB^2+BC^2 (pytago )
NC^2=68 => NC = \(\sqrt{68}\) (cm) Vì NC lớn hơn 0
VẬY ....