K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

a/ ΔABC có: \(AB^2+AC^2=BC^2\) (vì 32 + 42 = 52)

=> ΔABC vuông tại A

b) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)

=> \(\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)

Xét ΔABC và ΔABD ta có:

AD = AC (GT)

\(\widehat{BAC}=\widehat{BAD}\left(=90^0\right)\)

AB: cạnh chung

=> ΔABC = ΔABD (c - g - c)

=> BC = BD (2 cạnh tương ứng)

=> ΔBCD cân tại B

26 tháng 4 2018

a, Xét tam giác DAE và tam giác BAC có

      DAE = BAC ( đối đỉnh )

      AD = AB ( gt)

     AE= AC ( gt) 

=> tam giác DAE = tam giác BAC 

=> BC= DE

b, ta có  DAE = BAC = 90 độ ( 2 góc đối đỉnh )

 lại có BAD = CAE đối đỉnh 

=> BAD=CAE = 360 - (BaC + DAE)   tất cả trên 2 

<=> BAD= 360 -180  tâts cả trên 2 
<=> BAD = 180 trên 2

<=> BAD = 90 độ 

=> tam giác BAD vuông lại A

mà AB =AD (gt)

=> BAD vuông cân

=> DBA = BDA = 90 trên 2 = 45 độ

Chứng mình tương tự tam giác CAE vuông cân 

=>AEC=ACE= 90 trên 2 = 45 độ 

=> DBA=AEC=45 độ

mà chúng ở vị trí sole trong 

=> BD // CE

10 tháng 2 2018

A B C D 3cm 4cm 5cm

a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)

\(\Rightarrow\Delta ABC\)vuông tại A

b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)

Mà AC=AD (gt)

=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD 

=> tam giác BCD cân tại B

6 tháng 6 2020

Bài làm

a) Ta có: BC2 = 52 = 25 cm

AC2 + AB2 = 32 + 42 = 25 cm

=> BC2 = AC2 + AB2

=> Tam giác ABC vuông tại A ( theo Pytago đảo )

b) Xét tam giác BAD và tam giác BAC có:

AD = AC ( gt )

^BAD = ^BAC = 90o 

AB chung

=> Tam giác BAD = tam giác BAC ( c.g.c )

=> BD = BC ( hai cạnh tương ứng )

=> tam giác BCD cân tại B