K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Hình đây nè

27 tháng 3 2020

Gọi M là giao điểm của DF và BC

\(\Delta BKC\)có BF là đường cao đồng thời là phân giác nên \(\Delta BKC\)cân tại B

\(\Rightarrow\)BF cũng là trung tuyến\(\Rightarrow KF=CF\)

Lại có AD = CD (gt) nên FD là đường trung bình của \(\Delta AKC\)

\(\Rightarrow FD//AK\)hay \(DF//KB\)và 2FD = AK

\(\Rightarrow\frac{BG}{DG}=\frac{BK}{FD}=\frac{2BK}{AK}\)(1)

Ta có: \(\frac{EC}{ED}=\frac{DC-DE}{DE}=\frac{DC}{DE}-1=\frac{AD}{DE}-1\)

\(=\frac{AE-DE}{DE}-1=\frac{AE}{DE}-2\)

DM // AB (cmt) \(\Rightarrow\frac{AE}{DE}=\frac{AB}{DF}\)

\(\Rightarrow\frac{AE}{DE}-2=\frac{AB}{DF}-2=\frac{AK+KB}{DF}-2\)

\(=\frac{2\left(AK+KB\right)}{AK}-2=2+\frac{2BK}{AK}-2=\frac{2BK}{AK}\)(2)

Từ (1) và (2) suy ra \(\frac{BG}{DG}=\frac{CE}{DE}\)

\(\Rightarrow GE//BC\)(theo định lý Thales đảo)

Vậy \(GE//BC\)(đpcm)

4 tháng 2 2022

-Ơ bạn, câu c phải chứng minh trước câu b chứ?