Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(OE=OB=\dfrac{1}{2}BC\Rightarrow\widehat{OBE}=\widehat{OEB}\)
\(\widehat{AHE}=\widehat{BHO}\) ; \(\widehat{BHO}+\widehat{HBD}=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{HBD}\left(\widehat{OBE}\right)=90^0\)
\(\Rightarrow\widehat{AHE}+\widehat{OEB}=90^0\)
\(IE=IH=r\Rightarrow\widehat{AHE}=\widehat{IEH}\)
\(\Rightarrow\widehat{IEH}+\widehat{OEB}=90^0\Rightarrow IE\perp OE\)
a: Xét tứ giác BFEC có
\(\widehat{BEC}=\widehat{BFC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
hay B,F,E,C cùng thuộc 1 đường tròn
a: Xét tứ giác ABQK có
\(\widehat{AQB}=\widehat{AKB}\left(=90^0\right)\)
Do đó: ABQK là tứ giác nội tiếp
hay A,B,Q,K cùng thuộc một đường tròn
Tâm là trung điểm của AB
b: Xét tứ giác AIHK có
\(\widehat{AIH}+\widehat{AKH}=180^0\)
Do đó: AIHK là tứ giác nội tiếp
hay A,I,H,K cùng thuộc một đường tròn
Tâm là trung điểm của AH
1: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
2: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp
3: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
Tâm I là trung điểm của AH