Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a ) Xét ∆BAD và ∆CAD
AB = AC ( ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=> ∆ABH = ∆ACH(g.c.g)
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a) Theo định lý Pi-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(AC^2+8^2=10^2\Rightarrow AC^2=36\Rightarrow AC=6\left(cm\right)\)
b)
1. Xét tam giác vuông ABC có AM là trung tuyến ứng với cạnh huyền CB nên CM = AM = BM
Lại có AM = MD nên MA = MB = MC = MD
Xét tam giác ACD có CM = AM = DM = AD/2 nên tam giác ACD vuông tại C.
Vậy nên \(DC\perp AC\)
2. Xét tam giác CAE có CH là đường cao đồng thời trung tuyến nên tam giác CAE cân tại C.
3. Xét tam giác CMA và tam giác DMB có:
CM = DM
AM = BM
\(\widehat{AMC}=\widehat{BMD}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta CMA=\Delta DMB\left(c-g-c\right)\)
\(\Rightarrow AC=BD\)
4. Xét tam giác MAE có MH là đường cao đồng thời trung tuyến nên tam giác MAE cân tại M.
Suy ra MA = ME
Xét tam giác EAD có ME = MA = MD nên tam giác EAD vuông tại E.
Suy ra \(AE\perp ED\)
A B C E N I D M O 1 2 2 1 2 3 1 3 1
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE