K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Hình vẽ:

a) * Xét tam giác ADB và tam giác ADE, ta có: 
- AB = AE(gt) 
- Góc BAD = góc EAD( do AD là phân giác góc BAC : theo gt) 
- Chung cạnh AD 
=> Tam giác ADB = Tam giác ADE(c-g-c) (1) 
* Từ (1) => Góc ABD= góc AEB( các yếu tố tương ứng) (dpcm)

b và c tự tìm nha

12 tháng 4 2019

11 tháng 11 2022

cho mik hỏi DA là tia phân giác ^BDE 

23 tháng 8 2021

Lời giải:
a. Xét tam giác ABDABD và AEDAED có:

AB=AEAB=AE (gt)

ˆBAD=ˆEADBAD^=EAD^ (tính chất tia phân giác)

ADAD chung

⇒△ABD=△AED⇒△ABD=△AED (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra BD=EDBD=ED và ˆABD=ˆAEDABD^=AED^

⇒1800−ˆABD=1800−ˆAED⇒1800−ABD^=1800−AED^

⇒ˆDBM=ˆDEC⇒DBM^=DEC^

Xét tam giác DBMDBM và DECDEC có:

ˆBDM=ˆEDCBDM^=EDC^ (đối đỉnh)

BD=EDBD=ED (cmt)

ˆDBM=ˆDECDBM^=DEC^ (cmt)

⇒△DBM=△DEC⇒△DBM=△DEC (g.c.g)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0