K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔADK và ΔACK có

AD=AC

góc DAK=góc CAK

AK chung

Do đó: ΔADK=ΔACK

=>DK=CK

2: ΔADC cân tại A

mà AM là phân giác

nên AM vuông góc với CD

=>AM//BH

3: Xét tứ giác AMHQ có

AQ//HM

AQ=HM

Do đó: AMHQ là hình bìnhhành

=>HQ//AM

mà HB//AM

nên Q,H,B thẳng hàng

12 tháng 12 2019

A D B C K M ( (

GT

△ABC : AB < AC. D \in AB : AD = AC. DAM = MAC = BAC /2. M \in DC

 BC ∩ AM = {K}

KL

 DK = CK

Cách 1:

Xét △DAM và △CAM 

Có: AD = AC (gt)

    DAM = CAM (gt)

  AM là cạnh chung

=> △DAM = △CAM (c.g.c)

=> MD = CM (2 cạnh tương ứng)

và AMD = AMC (2 góc tương ứng)

Mà AMD + AMC = 180o (2 góc kề bù)

=> AMD = AMC = 180o/2 = 90o

Xét △DMK vuông tại M và △CMK vuông tại M

Có: KM là cạnh chung

       DM = CM (cmt)

=> △DMK = △CMK (2 cgv)

=> DK = CK (2 cạnh tương ứng)

Cách 2:

Xét △DAK và △CAK

Có: AD = AC (gt)

     DAK = CAK (gt)

  AK là cạnh chung

=> DAK = CAK (c.g.c)

=> DK = CK (2 cạnh tương ứng)

30 tháng 12 2020

A B C M a) Xét tam giác BAM và tam giác CAM có : BA = CA (GT) Góc BAM=góc CAM ( vì : AM là tia phân giác của góc BAC ) AM là cạnh chung Do đó: tam giác BAM = tam giác CAM(c.g.c) b) vì tam giác BAM = tam giác CAM (câu a) => góc AMB = góc AMC ( hai góc tương ứng) Mà : hai góc đó là hai góc kề bù Nên: Góc AMB=góc CAM = 90 độ => AM vuông góc với BC. D C) Xét tam giác BAD và tam giác CAD có: AB=AC( GT) BD=CD(GT) AD là cạnh chung =>Do đó :tam giác BAD=tam giác CAD(c.c.c) => AD là tia phân giác của góc A ( vì góc BAD=góc CAD) Nên: ba điểm A,D,M thẳng hàng => AM là đường trung trực của BC => AD cũng là đường trung trực của BC

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0

a: Xét ΔADK và ΔACK có

AD=AC

góc DAK=góc CAK

AK chung

=>ΔADK=ΔACK

=>DK=CK

b: ΔADC cân tại A

mà AM là phân giác

nên AM vuông góc DC

=>AM//HB

9 tháng 4 2023

Có hình ko ạ