K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

a) Xét Δ AIB và Δ CID:

+ IB = ID (gt).

+ IA = IC (I là trung điểm của AC).

+ ^AIB = ^CID (2 góc đối đỉnh).

=> Δ AIB = Δ CID (c - g - c).

b) Xét tứ giác ABCD có:

+ I là trung điểm của AC (gt). 

+ I là trung điểm của BC (IB = ID).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AD = BC và AD // BC (Tính chất hình bình hành).

c) Xét tứ giác KABC có: 

+ E là trung điểm của AB (gt).

+ E là trung điểm của KC (EC = EK).

=> Tứ giác KABC là hình bình hành (dhnb).

=> KA // BC (Tính chất hình bình hành).

Mà AD // BC (cmt).

=> 3 điểm D, A, K thẳng hàng (đpcm).

a) Xét ΔAIB và ΔCID có

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔAIB=ΔCID(c-g-c)

b) Xét ΔAID và ΔCIB có 

IA=IC(I là trung điểm của AC)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)

ID=IB(gt)

Do đó: ΔAID=ΔCIB(c-g-c)

Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)

mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

30 tháng 3 2016

Xét tam giácAIB và tam giác CID, có

AI=IC

AIB=CID

BI=ID

suy ra tam giác AIB=tam giacsCID(c-g-c)

b)Chứng minh như a,suy ra tam giac AID=tam Giác CIB

suy ra IAD=ICB mà 2 góc này ở vị trí so le trong suy ra điều phải chứng minh

11 tháng 12 2016

a) Xét tam giác AIB và tam giác IDC có:

Cạnh IA= cạnh IC( I là trung điểm của AC)

Cạnh IB = ID( gt)

Góc AIB = góc DIC ( hai góc đối đỉnh)

Do đó : Tam Giác,AIB=tam giác CID.

b) Ta có góc AID = góc CBD (ở vị trí so le trong)

Nên cạnh AC song song với BC

Hình Bạn Tự Vẽ Nha.

27 tháng 12 2016

Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)

a) Xét tam giác EFA và tam giác CAB, có:

AE = AC ( giả thiết)

AF = AB (giả thiết)

Góc EAF = góc BAC (2 góc đối đỉnh)

=> ΔEAF = ΔCAB (c.g.c)

b) Vì ΔEFA = ΔCAB (Theo a)

=> Góc ABC = Góc EFA (cặp góc tương ứng)

=> EF = BC (cặp cạnh tương ứng) (1)

Mà EK = KF = 1/2 EF (2)

BD = DC = 1/2 BC (3)

Từ (1), (2) và (3)

=> KF = BD

Xét ΔKFB và ΔFBD, có

Cạnh BF chung

KF = BD (chứng minh trên)

Góc EFB = Góc ABC (chứng minh trên)

=> ΔKFB =ΔDBF (c.g.c)

=> KB = FD (cặp cạnh tương ứng)

a: Xét ΔAIB và ΔCID có 

IA=IC

\(\widehat{AIB}=\widehat{CID}\)

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có 

I là trung điểm của AC

I là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC và AD=BC

c: Xét tứ giác AFCE có 

AF//CE

AF=CE

Do đó: AFCE là hình bình hành

Suy ra: Hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường

hay IE=IF

a) Xét ΔABIΔABIvà ΔCIDΔCID ta có:
BI = DI (gt)
ˆAIBAIB^ = ˆCIDCID^ ( 2 góc đối đỉnh)
AI = CI (vì I là trung điểm của AC)
⇒ΔAIB=ΔCID⇒ΔAIB=ΔCID

b) Vì ΔAIB=ΔCIDΔAIB=ΔCID (c/m câu a)
⇒ˆICD=ˆBAI⇒ICD^=BAI^ (2 góc tương ứng)
Mà ˆBAI=90oBAI^=90o ⇒ˆICD=90o⇒ICD^=90o
⇒DC⊥AC