K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

A B C E D 1 2 trên cạnh AB lấy E sao cho AE=AC

xét 2 tam giác AED và ACD có:

AC=AE ( gt)

\(\widehat{A_1}=\widehat{A_2}\)  ( gt)

AD chung

\(\Rightarrow\DeltaÂED=\Delta ACD\) ( C.G.C)

nên DE=DC ( 2 cạnh tương ứng )

trong tam giác DEB , ta có:

BE>BD-DE=BD-DC

=> AB-AC>BD-DC

23 tháng 4 2020

A B C D E H

trên AB lấy H sao cho AC = AH

xét tam giác AEC và tam giác AEH có : AE chung

^CAE = ^HAE do AE Là pg của ^BAC (Gt)

=> tam giác AEC = tam giác AEH (c-g-c)

=> EC = EH 

xét tam giác EHB có HB > BE - EH 

=> HB > BE - EC 

có HB = AB - AH mà AH = AC (cv) => HB = AB - AC

=> AB - AC > BE - EC

17 tháng 2 2017

​2.Trên tia AB lấy M sao cho AM = AC mà AC < AB nên AM < AB => M nằm giữa A,B

ΔAEC,ΔAEMcó AE chung ; AC = AM ;^CAE=^MAE(AE là phân giác góc BAC)

⇒ΔAEC=ΔAEM(c.g.c)=> EC = EM 

=> EB - EC = EB - EM < MB (bđt tam giác đối vớiΔEMB) mà AB - AC = AB - AM = MB

 Vậy AB - AC > EB - EC

17 tháng 2 2017

lm đc bài 1 ko bn ,mình đang cần bài 1

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO

 

12 tháng 7 2018

a, Xét t/g AHC và t/g DHC có:

AH = DH (gt)

góc AHC = góc DHC = 90 độ

HC chung

=> t/g AHC = t/g DHC (c.g.c) (đpcm)

b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:

AB2 + AC2 = BC2

=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82

=> AC = 8 (cm)

c, Xét t/g AHB và t/g DHE có:

AH = DH (gt)

góc AHB = góc DHE (đối đỉnh)

BH = EH (gt)

=> t/g AHB = t/g DHE (c.g.c) (đpcm)

=> góc HBA = góc DEH (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DE 

Mà AB _|_ AC

=> DE _|_ AC (đpcm)

d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)

Xét t/g AHB và t/g AHE có:

BH = BE (gt)

góc AHB = góc AHE = 90 độ

AH chung

=> t/g AHB = t/g AHE (c.g.c)

=> AB = AE (2 cạnh tương ứng) (2)

Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)

Từ (1),(2),(3) =>  AE + CD > BC (đpcm)