K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

12 tháng 4 2020

a) Có AB=AC=10cm

=> \(\Delta\)ABC cân tại A

b) Có: \(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^o\\\widehat{ABH}=\widehat{ACH}\end{cases}}\)

=> \(\widehat{BAH}=\widehat{CAH}\)=> AH là phân giác \(\widehat{BAC}\)

Ta có: AB=AC (gt)

AH chung

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

=> \(\Delta BAH=\Delta CAH\)

c) Có: \(\hept{\begin{cases}\widehat{MBH}=\widehat{NCH}\\\widehat{BMH}=\widehat{HNC}=90^o\\BH=CH\left(\Delta AHB=\Delta ACH\right)\end{cases}\Rightarrow\Delta BHM=\Delta CHN}\)

d) \(BH=\frac{1}{2}BC=\frac{12}{2}=6\left(cm\right)\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

e) Ta có: \(\hept{\begin{cases}\widehat{OBC}=90^o-\widehat{ABC}\\\widehat{OCB}=90^o-\widehat{ACB}\end{cases}}\)

mà \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{OBC}=\widehat{OCB}\)

\(\Rightarrow\Delta\)OBC cân tại O

23 tháng 4 2017

Hình tự vẽ

Xét \(\Delta MBH\)và \(\Delta NCH\)

\(\widehat{BMH}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{NBH}=\widehat{NQH}\)(Tam giác ABC cân tại A

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right)\)

\(MH=NH\left(2ctu\right)_{\left(1\right)}\)

Xét \(\Delta BQH\)và \(\Delta CNH\)

\(\widehat{Q}=\widehat{CNH}=90^o\)

\(BH=CH\left(cma\right)\)

\(\widehat{BHQ}=\widehat{NHC}\)(đối đỉnh)

\(\Rightarrow\Delta BQH=\Delta CNH\left(ch-gn\right)\)

\(\Rightarrow QH=NH\left(2ctu\right)_{\left(2\right)}\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MH=QH\)

=> \(\Delta HQM\)cân tại H

11 tháng 8 2017

Viết thiếu rồi bạn ơi mk ko hiểu

15 tháng 8 2017

mk viết đúng đề oy mà

16 tháng 7 2016

a/ xét tam giác ABC cân tại A ta có

AH là đường phân giác(gt)

=> AH là đường trung tuyến; AH là đường cao

=>H là trung điểm của BC và AH vuông góc với BC

\(\)

b/ ta có: H là trung điểm của BC

\(\Rightarrow BH=\frac{1}{2}BC\)

\(\Rightarrow BH=6cm\)

xét tam giác ABH vuông tại H ta có

\(AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

\(\Rightarrow AH^2=64\)


\(\Rightarrow AH=8cm\)

ta có

\(S_{ABC}=\frac{AH.BC}{2}\)

\(S_{ABC}=48cm^2\)

c/ xét tam giác MBH vuông tại M và tam giác NCH vuông tại N ta có

BH=HC(H là trung điểm của BC)

góc MBH=góc NCH (tam giác ABC vuông tại A)

=> tam giác MBH=tam giác NCH (ch-gn)

=> MH=NH (2 cạnh tuong ứng)

cmtt tam giác BGH=tam giác CNH (ch-gn)

=> QH=NH(2 cạnh tương ứng)

mà MH=NH(cmt)

nên QH=MH

=> tam giác GHM cân tại H

\(\)