Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K E
a)Xét ΔADB và ΔADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\left(gt\right)\)
AD:cạnh chung
=> ΔADB=ΔADE(c.g.c)
b)Vì: ΔADB=ΔADE(cmt)
=> \(\widehat{ABD}=\widehat{AED};BD=DE\)
Xét ΔDBH và ΔDEK có:
\(\widehat{BHD}=\widehat{EKD}=90^o\left(gt\right)\)
BD=DE(cmt)
\(\widehat{HBD}=\widehat{KED}\left(cmt\right)\)
=>ΔDBH=ΔDEK(cạnh huyền-góc nhọn)
=>BH=EK
Ta có hình vẽ sau:
A B E C D H K
a/ Xét ΔADB và ΔADE có:
AD: Cạnh chung
\(\widehat{BAD}=\widehat{EAD}\) (gt)
AB = AE (gt)
=> ΔADB = ΔADE (c.g.c) (đpcm)
b/ Vì ΔADB = ΔADE (ý a) => \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng)
và DB = DE (2 cạnh tương ứng)
Xét 2Δ vuông: ΔDBH và ΔDEK có:
DB = DE (cmt)
\(\widehat{ABD}=\widehat{AED}\) (cmt)
=> ΔDBH = ΔDEK (cạnh huyền - góc nhọn)
=> BH = EK(2 cạnh tương ứng)(đpcm)
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D
Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH
=> điểm B, E cách đều 2 mút của đoạn thẳng AH
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
Bạn tự vẽ hình nha!!!
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
3a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
ABD = EBD (BD là tia phân giác của ABE)
BD là cạnh chung
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE.
3b.
Xét tam giác AFD và tam giác ECD có:
FAD = CED ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
3c.
Tam giác ADF vuông tại A có:
AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà FD = CD (theo câu b)
=> AD < CD.
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a/ Xét tam giác ABD và tam giác ACE có:
AB=AC( tam giác ABC cân tại A)
Góc B=góc C(tam giác ABC cân tại A)
BD=CE(gt)
=> Tam giác ABD= tam giác ACE
b/ Xét tam giác HDB và tam giác KEC có:
BD=EC(gt)
Góc B=góc C(tam giác ABC cân tại A)
Góc DHB=góc EKC=90o
=> tam giác HDB=tam giác KEC(ch-gn)
=> HD=KE(cạnh tương ứng)
c/ Ta có: tam giác HDB=tam giác KEC(chứng minh trên)
=> Góc KEC=góc HDB(góc tương ứng)
=> Góc HDB= góc EDO(đối đỉnh)
Góc KEC=góc DEO(đối đỉnh)
Suy ra góc DEO=góc EDO
Vậy tam giác OED là tam giác cân và cân tại O
Phú mệt quá ai tik dùm với!!!!!!!!!!!!!!!!!!!!!
c/ Do tam giác HDB=tam giác KEC nên BH=CK(cạnh tương ứng)
Mà AH=AB-BH
AK=AC-CK
Vì AB=AC nên AH=AK
Xét tam giác AHO và tam giác AKO có:
AO chung
Góc AHO=góc AKO=90o
AH=AK(chứng minh trên)
=> tam giác AHO=tam giác AKO(ch-cgv)
=> Góc HAO=góc KAO(góc tương ứng)
Vậy AO là tia phân giác góc HAK
a) Xét ∆ADB và ∆AEC có:
AB=AC (gt)
góc ABD= góc ACE (gt)
BD=CE(gt)
=>∆ADB=∆AEC(c.g.c0
=>AD=AC (2 cạnh tương ứng)
=>∆ADE là ∆cân tại A
b)Xét ∆BHD và ∆CKE có:
góc BHD=góc EHC=90
BD=CE(gt)
góc B=góc C(gt)
=>∆BHD=∆CKE(cạnh huyền góc nhọn)
=>DH=EK(2 cạnh tương ứng)(đpcm)
c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)
mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)
=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)
c: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔADB=ΔAEC
=>AD=AC
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
=>HD=KE
Ta có: ΔHBD=ΔKCE
=>\(\widehat{HDB}=\widehat{KEC}\)
mà \(\widehat{HDB}=\widehat{IDE}\)(hai góc đối đỉnh)
và \(\widehat{KEC}=\widehat{IED}\)(hai góc đối đỉnh)
nên \(\widehat{IDE}=\widehat{IED}\)
=>IE=ID
ta có: HD+DI=HI
KE+EI=KI
mà HD=KE và DI=EI
nên HI=KI
Ta có: AH+HB=AB
AK+KC=AC
mà HB=KC và AB=AC
nên AH=AK
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
Do đó: ΔAHI=ΔAKI
=>\(\widehat{HAI}=\widehat{KAI}\)
=>AI là phân giác của góc BAC