Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D E F B C H
Kéo dài AH cắt BC tại F .
=> AF\(_{\perp}\)BC
=> \(\Delta ABF;\Delta ACF\) vuông tại F
=> \(\begin{cases}\widehat{BAF}=90^0-\widehat{ABF}\\\widehat{CAF}=90^0-\widehat{ACF}\end{cases}\)(1)
Mặt khác vì BC < AC
\(\Rightarrow\widehat{ABC}< \widehat{ACB}\) ( 2)
Từ (1) và (2)
=> \(\widehat{BAF}>\widehat{CAF}\)
a) Có góc A chung và 2 góc vuông => ĐPCM
b) Xét EHB và DHC có:
2 góc vuông và 2 góc đối đỉnh EHB và DHC
=> EHB đồng dạng với DHC
=>BH/CH=EH/DH
=>BH.DH=EH.CH
c)Từ câu a ta suy ra được tỉ số : AB/AC=AD/AE
và có góc A chung .
Từ đó suy ra: ADE đồng dạng với ABC
=> góc ADE= góc ABC
d) Ta có IO là đường trung bình ( tự chứng minh )
=> IO//AH => AHM đồng dạng với IOM
Tỉ số cạnh = AM/IM =2 ( do là đường trung bình )
Tỉ số diện tích của AHM so với IOM là 22=4
Vậy SAHM=4.SIOM
Bài 1 bạn tự làm nhé
Bài 2 :
A A A B B B F F F C C C D D D E E E
Xét \(\Delta\)ADE vuông tại E :
AE < AD (1)
Xét \(\Delta\)CDF vuông tại F
CF < CD (2)
Từ (1) và (2) => AE + CF < AD + CD = AC
Bài 3 :
C C C B B B A A A N N N M M M H H H
Ta có : \(BM=BC\)=> \(\Delta\)BMC cân ở C nên \(\widehat{MCB}=\widehat{CMB}\)
Ta lại có : \(\widehat{BCM}+\widehat{MCA}=90^0,\widehat{CMH}+\widehat{MCH}=90^0\)
=> \(\widehat{MCH}=\widehat{MCN}\)
Xét \(\Delta\)MHC và \(\Delta\)MNC có :
MC chung
HC = NC(gt)
\(\widehat{MCH}=\widehat{MCN}\)(cmt)
=> \(\Delta\)MHC = \(\Delta\)MNC(c.g.c)
Do đó \(\widehat{MNC}=\widehat{MHC}=90^0\)
hay MN \(\perp\)AC
Ta có : BM = BC,CH = CN và AM > AN
Do đó BM + MA + CH > BC + CN + NA hay AB + CH > BC + CA
(Bạn tự vẽ hình)
a) Gọi AH giao BC tại điểm F. H là trực tâm của tam giác ABC => AH vuông góc với BC tại F.
Xét tam giác ABC: AF vuông góc BC, AB<AC => BF<CF (Quan hệ đường xiên, hình chiếu)
Xét tam giác AFB và tam giác AFC có:
Cạnh AF chung
^AFB=^AFC=90o => ^BAF < ^CAF (Quan hệ giữa góc và cạnh đối diện trong 2 tam giác)
BF<CF (cmt)
^BAF < ^CAF hay ^BAH<^CAH (đpcm)
b) Tam giác ABC có: AB<AC => ^ABC>^ACB hay ^EBC>^DCB.
Xét tam giác BEC và tam giác CDB có:
^BEC=^CDB=90o
Cạnh BC chung => CE>BD.
^EBC>^DCB (cmt)
Vậy CE>BD.
câu đầu sai rồi bạn ơi