Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
a. Xét ΔABC và ΔHBA :
\(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
b. Xét ΔABC vuông tại A
Theo định lý Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
\(\Rightarrow\) BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) AH = 13,3 cm
\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\)
\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\)
\(\Rightarrow\) BH = 10 cm
c. Xét ΔAIH và ΔBAC :
\(\widehat{AIH}\) = \(\widehat{BAC}\) = 900
Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\) (phụ thuộc \(\widehat{HAC}\) )
\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)
\(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\)
\(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)
\(\Rightarrow\) AI . AB = AK. AC(đpcm)
a) Xét ΔABC và ΔHBA ta có:
\(\widehat{B}\) chung
\(\widehat{BAC}=\widehat{BHA}=90^0\)
⇒ΔABC∼ ΔHBA
b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:
\(BC^2=AB^2+AC^2\)
\(=6^2+8^2\)
\(=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì ΔABC ∼ ΔBHA(cmt)
\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)
Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
\(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)