K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB*AF=AE*AC: AB/AE=AC/AF

b: Xet ΔABC và ΔAEF có

AB/AE=AC/AF
góc BAC chung

=>ΔABC đồng dạng với ΔAEF

góc BFC=góc BDA=90 độ

mà góc B chung

nên ΔBFC đồng dạng với ΔBDA

=>BF/BD=BC/BA

=>BF/BC=BD/BA

=>ΔBFD đồng dạng với ΔBCA

 

28 tháng 3 2023

Giúp mình với ạ

30 tháng 5 2020

i don ' t know

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

2 tháng 5 2022

Helps me !!!

 

đầu bài thiếu kìa bạn

loading...  loading...  loading...  

17 tháng 4 2016

 Hướng dẫn làm:
(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Đúng nha nguyễn ngọc khánh vy

17 tháng 4 2016

(a) Chứng minh ΔABE∼ΔACF→AEAF=ABAC→ΔAEF∼ΔABC
(b) Chứng minh BH.BE=BD.BC và CH.CF=CD.BC, từ đó suy ra điều phải chứng minh.
(c) Chứng minh ΔBHD∼ΔADC, từ đó ta có tỉ số BDHD=ADDC↔AD.HD=BD.DC
Đặt BD=x thì DC=BC−x
Khi đó 4AD.HD=x(BC−x)=−4x2+4BC.x−BC2+BC2=−(2x−BC)2+BC2≤BC2
(d) Chứng minh AKIˆ=AEIˆ
Sau đó chứng minh ΔEIA∼ΔEQH và suy ra AEIˆ=HEQˆ=HKQˆ

Mình đúng nha nguyễn ngọc khánh vy

4 tháng 5 2018

T.i.c.k cho mình rồi mk cũng t... cho bạn

4 tháng 5 2018

Là s bn??