Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho sửa lại đề tí phải là \(\widehat{IAC}=10^0\)
Hình bạn tự vẽ nha
Xét \(\Delta ABC\) có:\(\widehat{ABC}+\widehat{ACA}+\widehat{BAC}=180^0\)(tổng ba góc trong tam giác)
Hay \(80^0+\widehat{ACB}+\widehat{BAC}=180^0\)
\(\Rightarrow\widehat{ACB}+\widehat{BAC}=100^0\)
Mà \(\Delta ABC\) cân tại B(vì AB=BC)
\(\Rightarrow\widehat{ACB}=\widehat{BCA}=\dfrac{100^0}{2}=50^0\)
Vẽ \(\Delta AKC\) đều(K nằm cùng phía với A,B,C)
Xét \(\Delta AKB\) và \(\Delta CKB\) có:
\(AK=KC\)(vì \(\Delta AKC\) đều)
\(BA=BC\left(gt\right)\)
\(KB\) cạnh chung
\(\Rightarrow\Delta AKB=\Delta CKB\left(c.c.c\right)\)
\(\Rightarrow\widehat{AKB}=\widehat{CKB}\)(2 góc tương ứng)
Mà \(\widehat{AKC}=60^0\)(cách vẽ)
Hay \(\widehat{AKB}+\widehat{CKB}=60^0\)
\(\Rightarrow\widehat{AKB}=\widehat{CKB}=\dfrac{60^0}{2}=30^0\)
Lại có:\(\widehat{KAC}=60^0\)(cách vẽ)
Hay \(\widehat{KAB}+\widehat{BAC}=60^0\)
Hay \(\widehat{KAB}+50^0=60^0\)
\(\widehat{KAB}=10^0\)
Xét \(\Delta KAB\) và \(\Delta CAI\) có:
\(AK=AC\)(cách vẽ)
\(\widehat{KAB}=\widehat{CAI}=10^0\left(cmt\right)\)
\(\widehat{AKB}=\widehat{ACI}=30^0\left(cmt\right)\)
\(\Rightarrow\Delta KAB=\Delta CAI\left(g.c.g\right)\)
\(\Rightarrow AB=AI\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AIB\) cân tại A
\(\Rightarrow\widehat{BIA}=\dfrac{180^0-\widehat{BAI}}{2}\)
Mà \(\widehat{BAI}+\widehat{IAC}=50^0\)
Hay \(\widehat{BAI}+10^0=50^0\)
\(\widehat{BAI}=40^0\)
\(\Rightarrow\widehat{BIA}=\dfrac{180^0-\widehat{BAI}}{2}=\dfrac{180^0-40^0}{2}=\dfrac{140^0}{2}=70^0\)
Vậy \(\widehat{AIB}=70^0\)
C cho t hỏi đc ko:
\(\widehat{AKB}=60^0\) thì sao \(\widehat{AKB}+\widehat{CKB}=60^0\) được???
Mik nghĩ là phải bằng \(300^0chứ\)
Có thể giải thích giúp mik chỗ này đc ko ạ???
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo!
Hình bn tự vẽ nhé !
do ΔABC cân tại A ⇒ góc ABC =góc ACB
⇒góc ACB =800 ( vì góc ABC = 800 )
ta có : góc BAC = 1800 - ( ABC + ACB )
⇒ BAC =1800 - ( 800 + 800 )
⇒BAC =1800 - 1600
⇒BAC =200
lại có : BAI + CAI =BAC = 200
hay BAI + 100 =200
⇒ BAI = 100
⇒BAI =CAI (=100)
xét ΔABI và ΔACI có :
AB =AC ( ΔABC cân tại A )
BAI =CAI ( CM trên )
AI : chung
⇒ ΔABI = ΔACI ( c.g.c )
⇒ AIB = AIC (cặp góc tương ứng )
Xét ΔAIC ta có :
IAC +ACI +CIA = 1800 (tính chất tổng 3 góc của Δ )
hay 100 + 300 +CIA =1800
⇒CIA =1400
mà CIA = BIA ( CM trên )
⇒BIA = 1400
Vậy góc BIA =1400
Chúc bn hk tốt !
Ta có hình vẽ sau:
M D B A C
Vẽ hình trước nhé, bài làm để sau cái đã~
Hình như từng làm bài này rồi
Đợi nháp lại~
Chết cha
cái hình sai rồi -.-' xin lỗi
Ko vẽ hình nữa
tự vẽ nhaT.T
A B C D E K I
Trên nửa mặt phẳng bờ BC có chứa điểm A, ta dựng 1 tam giác đều BIC.
Gọi giao điểm của tia CI với AB là K.
Dễ thấy 3 điểm B,I,E thẳng hàng (Do ^CBI=^CBE=600)
Ta có: ^ABC=^ACB => ^ABE+^CBE=^ACK+^BCK. Mà ^CBE=^BCK=600
=> ^ABE=^ACK => \(\Delta\)AEB=\(\Delta\)AKC (g.c.g) = >AE=AK (2 cạnh tương ứng)
=> \(\Delta\)AKE cân tại A. Mà 2 điểm K và E lần lượt thuộc 2 cạnh AB và AC của \(\Delta\)ABC cân tại A
=> KE//BC => Dễ dàng chứng minh được \(\Delta\)KEI đều => KE=IE=IK
Xét \(\Delta\)DBC: Có ^DBC=800 và ^BCD=500.
Thấy rằng 500=(1800-800)/2 => \(\Delta\)DBC cân tại đỉnh B => BC=BD
Vì \(\Delta\)BIC đều nên BC=BI => BD=BI => \(\Delta\)DBI cân tại B
Có thể tính được ^IBD=200 => ^BDI=^BID=800
=> ^DIK=^BIK-^BID= 1200-800 = 400. (Do ^BIK=1200) (1)
Xét \(\Delta\)KBC: ^KBC=800; ^KCB=600 => ^BKC=400 hay ^DKI=400 (2)
Từ (1) và (2) => ^DIK=^DKI => \(\Delta\)KDI cân tại D => DK=DI
Xét \(\Delta\)DKE và \(\Delta\)DIE có: DK=DI; DE chung; KE=IE (cmt) => \(\Delta\)DKE=\(\Delta\)DIE (c.c.c)
=> ^KED=^IED (2 góc tương ứng). Mà ^KED+^IED=^KEI=600 => ^IED= 600/2 =300
hay ^BED=300.
ĐS:...
Mình làm được rồi nhưng thấy bảo là Toán lớp 7 nên lỡ xóa đi. Bây giờ chả nhớ cách giải. Hu Hu
AB không thể = BC
Vẽ hình ra bạn...