K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Để giải bài toán, ta sẽ sử dụng các định lý trong hình học tam giác. a/ Để tính HB và HC, ta cần tìm độ dài đường cao AH trước. Với thông tin AH.AC = 3.5 và AC = 15cm, ta có thể tính được AH: AH = (AH.AC)/AC = (3.5)/(15) = 0.2333 cm Tiếp theo, ta xét tam giác ABC với tam giác ABC. góc B và đường cao AH. Áp dụng định lý Pythagoras, ta có công thức: AB^2 = AH^2 + BH^2 Với độ dài AB = 15cm, ta có: 15^2 = 0,2333^2 + BH^2 225 = 0,0544 + BH^2 BH^2 = 224,9456 BH ≈ 14,998 cm Tương tự, ta có: HC ≈ 0,2333 cm Vậy HB ≈ 14,998 cm và HC ≈ 0,2333 cm. b/ Để chứng minh AH^3 = BC.BE.CF, ta sẽ sử dụng các tỷ lệ trong tam giác tương đồng. Kiểm định tam giác AHB và tam giác AFC, ta có: AH/AF = HB/FC 0.2333/AF = 14.998/(15 - FC) Tương tự, xét tam giác AHC và tam giác AEB, ta có: AH/AE = HC/EB 0.2333/AE = 0.2333/(15 - EB ) Từ hai tỷ lệ trên, ta có: AF/(15 - FC) = AE/(15 - EB) Nhân cả hai quan sát với (15 - FC)(15 - EB), ta có: AF(15 - EB) = AE(15 - FC) Vậy ta có BC.BE.CF = AF(15 - EB) = AE(15 - FC) = AH^2. Do đó, AH^3 = BC.BE.CF.

a: Sửa đề: AH/AC=3/5

Xét ΔAHC vuông tại H có sin C=AH/AC=3/5

Xét ΔABC vuông tại A có sin C=AB/BC

=>15/BC=3/5

=>BC=25(cm)

=>\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2; CH*CB=CA^2

=>BH=15^2/25=9cm; CH=20^2/25=16cm

b: BC*BE*CF

=BC*BH^2/BA*CH^2/CA

=AH^4/AH

=AH^3

20 tháng 8 2023

Đề đúng là: \(\dfrac{AH}{AC}=\dfrac{3}{5}\). Bạn tự vẽ hình nhé.

(a) Theo đề: \(\dfrac{AH}{AC}=\dfrac{3}{5}\Leftrightarrow AC=\dfrac{5}{3}AH\)

Ta có: \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)

\(\Leftrightarrow BC^2=15^2+\left(\dfrac{5}{3}AH\right)^2\Rightarrow BC=\sqrt{225+\dfrac{25}{9}AH^2}\)

Lại có: \(AB^2=BC.HB\Leftrightarrow HB=\dfrac{AB^2}{BC}=\dfrac{15^2}{\sqrt{225+\dfrac{25}{9}AH^2}}\)

Ta cũng có: \(AH^2=HB.HC=HB\left(BC-HB\right)=BC.HB-HB^2\)

\(\Leftrightarrow AH^2=\sqrt{225+\dfrac{25}{9}AH^2}\cdot\dfrac{15^2}{\sqrt{225+\dfrac{25}{9}AH^2}}-\left(\dfrac{15^2}{\sqrt{225+\dfrac{25}{9}AH^2}}\right)^2\)

\(=15^2-\dfrac{15^4}{225+\dfrac{25}{9}AH^2}\)

\(\Rightarrow AH=12\left(cm\right)\)

Thay vào tính được: \(HB=9\left(cm\right);BC=25\left(cm\right)\)

\(\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)

 

(b) Xét \(\Delta AHB\) vuông tại \(H:BE.AB=HB^2\Leftrightarrow BE=\dfrac{HB^2}{AB}\)

Tương tự, \(\Delta AHC\) vuông tại \(H:CF.AC=HC^2\Leftrightarrow CF=\dfrac{HC^2}{AC}\)

Ta có: \(BC.BE.CF=\left(\dfrac{AB.AC}{AH}\right)\cdot\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\)

\(=\dfrac{HB^2.HC^2}{AH}=\dfrac{\left(HB.HC\right)^2}{AH}=\dfrac{\left(AH^2\right)^2}{AH}=AH^3\left(đpcm\right)\)

8 tháng 8 2017

bạn nào biết trả lời nhanh nha. mình đang cần gấp . cảm ơn

10 tháng 8 2017

   A B C H M E F N I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH\)

Theo hệ thức lượng trong tam giác vuông ta có \(AB^2=BC^2-AC^2=\frac{AB^2AC^2}{AH^2}-AC^2\Rightarrow15^2=\frac{15^2.\frac{25}{9}AH^2}{AH^2}-AC^2\)

\(\Rightarrow AC^2=400\Rightarrow AC=20\left(cm\right)\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(\Rightarrow HB=\frac{AB^2}{BC}=9\left(cm\right);HC=BC-BH=25-9=16\left(cm\right)\)

b.Vì E;F là hình chiếu của H lên AB;AC \(\Rightarrow\widehat{E}=\widehat{F}=\widehat{A}=90^0\Rightarrow AEHF\)là hình chữ nhật

c. Gỉa sử \(AM⊥EF\)\(\Rightarrow\)ta phải chứng minh M là trung điểm BC

Gọi I là giao điểm của EF và AH ;   N là giao của EF và AM

Xét tam giác AIN và tam giác AHM 

có \(\hept{\begin{cases}\widehat{A}chung\\\widehat{N}=\widehat{H}=90^0\end{cases}\Rightarrow\Delta AIN~\Delta AHM\left(g-g\right)\Rightarrow\widehat{AIN}=\widehat{AMH}\left(1\right)}\)

Xét tam giác AEF và tam giác ACB có \(\hept{\begin{cases}\widehat{A}=90^0chung\\\widehat{C}=\widehat{E}\left(+\widehat{B}=90^0\right)\end{cases}\Rightarrow\Delta AEF~\Delta ACB\left(g-g\right)\Rightarrow\widehat{AFE}=\widehat{B}\left(2\right)}\)

Vì AEHF là hình chữ nhật nên \(\widehat{IFA}=\widehat{IAF}\left(3\right)\)

Lại có \(\widehat{AIF}=180^0-2.\widehat{IFA}\)

Từ (1) ;(2) và (3) \(\Rightarrow\widehat{AMB}=180^0-2.\widehat{B}\Rightarrow\Delta AMB\)cân tại M \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)\(\Rightarrow M\)là trung điểm BC

Vậy trung tuyến AM vuông góc với EF

d. Gỉa sử tam giác ABC vuông cân \(\Leftrightarrow AB=AC\Rightarrow S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AB^2\left(4\right)\)

\(\Delta ABC\)vuông cân \(\Leftrightarrow AE=AF\Rightarrow S_{AEHF}=AE.AF=AE^2=\frac{1}{4}AB^2\Rightarrow2S_{AEHF}=\frac{1}{2}AB^2\left(5\right)\)

Từ (4) và (5) ta có \(S_{ABC}=2S_{AEHF}\)đúng với giả thiết ban đầu 

Vậy giả sử \(S_{ABC}=2S_{AEHF}\)thì tam giác ABC vuông cân  

17 tháng 6 2021

a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)

\(=>HB=BC-HC=15-9,6=5,4cm\)

áp dụng Pytago trong \(\Delta AHC\) vuông tại H

\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)

\(b,\) do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H

theo hệ thức lượng

\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)

c, do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)

áp dụng pytago trong \(\Delta EHA\) vuông tại E

\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)

theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH

\(=>AH^2=HB.HC\left(2\right)\)

(1)(2)=>\(HE^2+HF^2=HB.HC\)

3 tháng 7 2021

a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)

Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)

b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274

3 tháng 7 2021

a) Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.CB\)

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)

b) Áp dụng hệ thức lượng trong tam giác vuông có:

\(BH^2=BE.BA\)

\(CH^2=CF.CA\)

\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)

a: \(AH\cdot BC=AB\cdot AC\)

nên AH/AC=AB/BC=3/5

=>BC=25cm

\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)

\(HB=\dfrac{225}{25}=9\left(cm\right)\)

HC=25-9=16cm

b: \(BC\cdot BE\cdot CF\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)

\(=\dfrac{AH^4}{AH}=AH^3\)

17 tháng 10 2023

Ta có: 

\(\left\{{}\begin{matrix}AB^2=BC\cdot BH\Rightarrow AB=\sqrt{BC\cdot BH}=\sqrt{\left(8+2\right)\cdot2}=2\sqrt{5}\left(cm\right)\\AC^2=BC\cdot CH\Rightarrow AC=\sqrt{BC\cdot CH}=\sqrt{\left(8+2\right)\cdot8}=4\sqrt{5}\left(cn\right)\end{matrix}\right.\)

\(BC\cdot AH=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{2\sqrt{5}\cdot4\sqrt{5}}{2+8}=4\left(cm\right)\)

\(sinC=\dfrac{AB}{BC}=\dfrac{2\sqrt{5}}{10}\Rightarrow\widehat{C}\approx27^o\)