Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E 1 2
Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)
CM: Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
b) Ta có : t/giác ABD = t/giác EBD (cmt)
=> AD = DE (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)
c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE
AD = DE (cmt) => D \(\in\)đường trung trực của AE
mà B \(\ne\)D => BD là đường trung trực của AE
Bài 2:
A B C D E H 1 2
a) Xét hai tam giác ABD và EBD có:
AB = EB (gt)
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
BD: cạnh chung
Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)
Mà \(\widehat{BAD}=90^o\)
Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.
b) Vì AB = EB (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực
Do đó: BD là đường trung trực của AE. (1)
c) Xét hai tam giác vuông ADH và EDC có:
DA = DE (\(\Delta ABD=\Delta EBD\))
\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)
Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)
Suy ra: AH = EC (hai cạnh tương ứng)
Ta có: BH = AB + AH
BC = EB + EC
Mà AB = EB (gt)
AH = EC (cmt)
\(\Rightarrow\) BH = BC
\(\Rightarrow\) \(\Delta BHC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay
BD \(\perp\) HC (2)
Từ (1) và (2) suy ra: AE // HC (đpcm).
Tam giác ABD=t.g EBD (cạnh huyền_góc nhọn)
=> BA =BE => B thuộc đường trung trực của AE (1)
=> DA =DE => D thuộc đường trung trực của AE(2)
TỪ 1 VÀ 2 SUY RA BDlà đường trung trực của AE
B, Tam giác AFD=t.g ECD (cạnh góc vuông_góc nhọn) => DF=DC
Xét tam giác vuông EDC (góc E =90) có DC là cạnh huyền
=> DC>DE (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AD=ED (CMT) nên AD<DC
d, Vì t.g ABD=t.g EBD nên suy ra AB=EB => t.g ABE cân tại B => góc BAE= (180 độ - góc ABC):2 (3)
Chứng minh được t.g BDF=t.g BDC (c.c.c) => BF=BC
=> t.g FBC cân tại B => góc BFC= (180 độ - góc ABC):2 (4)
TỪ 3 VÀ 4 SUY RA góc BAE=góc BFC
Mà 2 góc này ở vị trí đồng vị nên suy ra AE//FC
tích nha
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE