K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔEBD có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó:ΔABD=ΔEBD

b: Ta có:ΔABD=ΔEBD

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE\(\perp\)BC

c: Ta có: ΔABD=ΔEBD

nên DA=DE
hay D nằm trên đường trung trực của AE(1)

ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

26 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì AD là phân giác của ABC nên ABD = DBC

Xét Δ ABD và Δ EBD có:

AB = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

\(\Rightarrow DE\perp BE\) hay \(DE\perp BC\left(đpcm\right)\)

c) Gọi H là giao điểm của AE và BD

Xét Δ ABH và Δ EBH có:

AB = EB (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> AH = EH (2 cạnh tương ứng) (1)

và AHB = EHB (2 góc tương ứng)

Mà AHB + EHB = 180o (kề bù) nên AHB = EHB = 90o

\(\Rightarrow BH\perp AE\) hay \(BD\perp AE\left(2\right)\)

Từ (1) và (2) => BD là đường trung trực của AE (đpcm)

 

26 tháng 11 2016

Ta có hình vẽ:

A D B C E

Gọi BD cắt AE tại M

a/ Xét tam giác ABD và tam giác EBD có:

BD: cạnh chung

BA = BE (GT)

\(\widehat{ABD}\)=\(\widehat{DBE}\) (GT)

=> tam giác ABD = tam giác EBD (c.g.c)

b/ Ta có: tam giác ABD = tam giác EBD (câu a)

=> \(\widehat{A}\)=\(\widehat{E}\)=900 (2 góc tương ứng)

=> DE \(\perp\)BC (đpcm)

c/ Xét tam giác ABM và tam giác EBM có:

BM: cạnh chung

\(\widehat{ABM}\)=\(\widehat{MBE}\)(GT)

\(\widehat{A}\)=\(\widehat{E}\)=900

Trường hợp cạnh huyền góc nhọn

=> tam giác ABM = tam giác EBM (g.c.g)

=> \(\widehat{AMB}\)=\(\widehat{EMB}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{EMB}\)=1800

=> \(\widehat{AMB}\)=\(\widehat{EMB}\)=900

=> BD \(\perp\)AE

Mà BM là phân giác góc B

=> BD là trung trực của AE (đpcm)

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=goc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBMN có

NA là trung tuýen

NI=2/3NA

=>I là trọng tâm

=>MI đi qua trung điểm của BN

26 tháng 3 2023

Cảm ơn ạ, 😍

 

29 tháng 7 2017

ahihi Dồ     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z

26 tháng 3 2022

Hỏi đáp Toán
 a) 

ΔABDΔABD và ΔEBDΔEBD có:
BA = BE (gt)
ˆB1=ˆB2B1^=B2^ (BD là tia phân giác góc B)
BD là cạnh chung
ΔABD=ΔEBD⇒ΔABD=ΔEBD (c.g.c)

 

 ˆBAD=ˆBEDBAD^=BED^ (hai góc tương ứng)
mà ˆBADBAD^ =900=900
ˆBEDBED^ =900=900
 DE  BE

b) ΔABIΔABI và ΔEBIΔEBI có:
BA = BE (gt)

6 tháng 7 2018

Câu d nè bn.

d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)

➡️Góc ABC = 60°

mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)

➡️∆ BFC đều

➡️BC = FC = FB

✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)

➡️AB = 1/2 BC (t/c)

➡️BC = 2 AB

Theo Pitago ta có: 

BC 2 = AB 2 + AC 2

➡️(2 AB) 2 = AB 2 + AC 2 

➡️4 AB 2 - AB 2 = AC 2

➡️3 AB 2 = AC 2

➡️3 AB 2 = 25

➡️AB 2 = 25 ÷ 3 = 25/3

Vậy ta có: BC 2 = 25/3 + 25 = 100/3

➡️BC = √100/3

mà BC = FC (cmt)

➡️FC = √100/3

Vậy đó, hok tốt nhé

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0